
IACR Communications in Cryptology
Vol. 0, No. 0, 45 pages.

Structured Encryption for Indirect Addressing
Ruth Ng1, Alexander Hoover2 , David Cash2 and Eileen Ee1

1 DSO National Laboratories, Singapore
2 University of Chicago, Computer Science, Chicago, United States

Abstract. The Structured Encryption (StE) framework can be used to capture the
encryption and querying of complex data structures on an honest-but-curious server.
In this work, we introduce a new type of StE called indirectly addressed multimap
encryption (IA-MME). We propose two IA-MME schemes: the layered multimaps
approach which extends and generalizes the existing “multimap chaining” approach,
and a novel technique called the single multimap approach which has comparable
efficiency and strictly better security. We demonstrate that our formalisms simplify
and modularize StE solutions for real-world use cases in searchable encryption and SQL
databases, and provide simulations demonstrating that our IA-MME constructions
lead to tangible efficiency and security gains on realistic data. As a part of our
techniques, we identify and correct a technical error in prior constructions — providing
greater insight into issues that can arise when composing StE schemes.
Keywords: structured encryption · encrypted search · searchable encryption ·
indirect addressing

1 Introduction
Computing on encrypted data has tremendous potential to mitigate the risk of placing
data in the hands of cloud services. Amongst many approaches, Structured Encryption
(StE) [CK10] has emerged as a promising tool for efficiently outsourcing encrypted data
and query computation. StE allows one to encrypt a data structure and then delegate the
ability to run queries via query-specific tokens. The StE definition is sufficiently general
that it can be used to capture the functionality that would be desired in many real-world
encrypted databases, including keyword-search (e.g. over documents in SSE), relational
databases (e.g. SQL), and web graphs (e.g. social networks).

While many techniques can fit into the definitional framework of StE, much research
has been on simple, efficient constructions from basic symmetric encryption with few
rounds of interaction. This efficiency is enabled by allowing for some controlled leakage
to the server, such as the size and access pattern to the database. As such, the security
of an StE scheme can be directly quantified through its leakage profile—a mathematical
description of what is learned by an adversary observing queries to the encrypted data
structure.

In this framework, Chase and Kamara [CK10] introduced “multimap chaining” as
a technique to build more advanced StE by composing simpler StE primitives. In the
simplest case, the technique involves using multiple multimaps – a mapping M from labels
ℓ to tuples of values M[ℓ] – to index complicated data structures in such a way that
the tokens for accessing one multimap were put in a second. These are then encrypted
using multimap encryption (MME), a well-studied StE primitive. Multimap chaining

E-mail: thisemailisnotruthless@gmail.com (Ruth Ng), alexhoover@uchicago.edu (Alexander
Hoover), davidcash@uchicago.edu (David Cash)

This work is licensed under a “CC BY 4.0” license.

https://orcid.org/0009-0003-9818-1419
https://axhoover.com
https://orcid.org/0009-0005-4230-658X
mailto:thisemailisnotruthless@gmail.com
mailto:alexhoover@uchicago.edu
mailto:davidcash@uchicago.edu
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 Structured Encryption for Indirect Addressing

has since been leveraged to support large and complex subsets of SQL queries on SQL
databases [KM18, KMZZ20, CNR21].

Our work extends and generalizes multimap chaining to indirect addressing (IA), where
a single query may trigger an arbitrary number and pattern of accesses within the data
structure. More concretely, IA can be used in a multimap (IA-MME) M where there
are labels ℓ, ℓ1, . . . , ℓn such that M[ℓ] = (ℓ1, . . . , ℓn) and for each i M[ℓi] = Di for some
payload Di. For example, IA has been used implicitly in searchable encryption (SSE) for
keyword-based document retrieval, where ℓ is a keyword, the ℓi are document identifiers
and the Di are the document contents. In this work, we focus on building encrypted data
structures for this new IA-MME data type using the StE framework.

We first show how multimap chaining can be generalized to a layered multimaps
approach (LMM) construction, implementing IA-MME generically from MME primitives.
In this process, we identify a proof error that had gone unobserved since the original Chase
and Kamara work [CK10] and reoccurs in later works [KM18, KMZZ20]. Fortunately, we
show how this error can be corrected with an additional natural and mild assumption on
the underlying MME, we call content obliviousness.

We additionally show how to improve over the LMM construction, with a novel technique
captured in our single multimap approach (SMM) construction. From a theoretical
perspective, SMM has strictly better security and avoids the need for composition (and
the accompanying proof complications). However, we go beyond the theory and provide
simulations on real-world data, which show that SMM is also a more efficient approach in
practice as well.

The IA-MME abstraction handles the complexity of IA, simplifying the expression of
StE schemes. This can be put to use in real-world use-cases, making the schemes easy to
understand and customize. We demonstrate this by building several SSE and SQL StE
schemes using IA-MME and running simulations of these schemes on realistic data.

Our contributions. In this work:

1. We formalize IA-MME as a new StE primitive, encompassing and modularizing a large
class of StE.

2. We generalize the multimap chaining technique from the literature to the layered
multimap approach (LMM), which we use to build IA-MME generically from standard
MME primitives. In doing so, we identify a proof error that is endemic in other
multimap chaining proofs from prior works [CK10, KM18, KMZZ20].

3. We introduce a very general way to fix the error and recover the desired composition
result, using a natural property of leakage we identify and call content obliviousness.
We then provide the necessary corrected theorems that prior works rely on.

4. We propose the single multimap approach (SMM), an IA-MME that has strictly better
security than LMM without sacrificing efficiency. By amalgamating multiple multimaps
into a monolithic index, setup leakage is confined to the total size of the encrypted data
structures (instead of the size of the constituent multimap layers). To build SMM, we
introduce a new type of MME primitive called response-flexible MME and a new notion
of security in the presence of token-values.

5. We use IA-MME as a primitive to design schemes for real-world applications using SSE
and SQL StE. The modularity of IA-MME allows us to reframe existing schemes and
explore new approaches to these use cases simply. We conclude with some simulations
on realistic datasets, demonstrating that IA-MME can bring huge storage savings (over
naïve MME solutions) and that the leakage reduction of SMM over LMM is significant.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 3

1.1 Related Work
StE was first introduced by CK [CK10] as a generalization of searchable symmetric encryp-
tion which was first introduced by SWP and formalized by CGKO [SWP00, CGKO06].
The StE framework can and has been used to capture many real-world use cases including
encrypting SQL data [KM18, KMZZ20, CNR21] and supporting rich keyword queries in
document storage systems [CJJ+14, CJJ+13, WCL+10, FJK+15].

Added functionality and security has been studied for specific forms of StE, including
support for dynamic data structures [KPR12, KP13], volume hiding queries [KM19,
PPY18, NPG14], models for adaptive compromise [JT20], costs of minimizing leakage
[PPY20, KMO18] and many more [Goh03, BBO07, CT14, SPS14, Bos16, ANSS16, BMO17,
KM17, AKM19, ASS18, DPP18].

StE has been subject to so-called leakage-abuse attacks which can sometimes recover
damaging information about queries and encrypted data [IKK12, NKW15, CGPR15,
PW16, ZKP16]. The attacks work against proven-secure constructions by exploiting the
permitted leakage, so they are independent of possible gaps in proofs due to composition.
However, reducing leakage in order to limit leakage abuse has been a common goal.

2 Preliminaries
Given positive integer n, let [n] = {1, . . . , n}. We denote the cardinality of a tuple t with
#(t), the empty tuple with () and the bitlength of a string s with |s|. In pseudocode, we
will assume that all integers are intialized to 1 and tuples to ().

Table mappings. We capture mappings as lookup tables of the form T. These map
labels ℓ ∈ {0, 1}∗ to values T[ℓ] ∈ {0, 1}∗ ∪ ⊥. In pseudocode, uninitialized tables are
assumed to map all labels to ⊥.

Games. We use the code-based game-playing framework of BR [BR06]. Given oracle O
and adversary A, we write x←$AO(x1, . . . , xm) to denote that A, a possibly randomized
algorithm, is run with inputs x1, . . . , xm and its output is x. It has black-box access to O
and can make as many queries as it likes. Given game G we write Pr[G(A)] to denote the
probability that A plays G and the latter returns true.

Function families, PRF security. A function family F defines a key set F.KS and
output length F.ol. It defines an evaluation algorithm F.Ev : F.KS× {0, 1}∗ → {0, 1}F.ol.
We define PRF security for function family F via the game Gprf

F depicted in Fig. 1. Given
adversary A, let Advprf

F (A) = 2 Pr[Gprf
F (A)]− 1 be its PRF advantage.

We give a stronger game and advantage definition in Appendix E Fig. 17 for PRF
security in an idealized model with adaptive compromise, taken from [JT20]. It is only
needed for Theorem 1, so we omit it from the main text.

Symmetric Encryption and IND$-security. A symmetric encryption scheme SE
defines a key set SE.KS, encryption algorithm SE.Enc, and decryption algorithm SE.Dec.
and ciphertext length function SE.cl. We require that if C←$ SE.Enc(K, M) then |C| =
SE.cl(|M |) and SE.Dec(K, C) = M .

We say SE is IND$-secure if its ciphertexts are indistinguishable from random strings.
This is captured in the game Gind$

SE in Fig. 1. Given adversary A, let Advind$
SE (A) =

2[Pr[Gind$
SE (A)] − 1 be its IND$ advantage. We give an additional game and advantage

definition in Appendix E Fig. 17 for KP security which captures an idealized model with
adaptive compromise, taken from [JT20]. This definition is only needed for Theorem 1, so
we omit it from the main text.

4 Structured Encryption for Indirect Addressing

Game Gprf
F (A)

b←$ {0, 1} ; K←$ F.KS
b′←$AFn ; Return b = b′

Oracle Fn(X)
If T[X] = ⊥ then T[X]←$ {0, 1}F.ol

c1←$ F.Ev(K, X) ; c0 ← T[X] ; Return cb

Game Gind$
SE (A)

b←$ {0, 1} ; K←$ SE.KS
b′←$AEnc ; Return b = b′

Oracle Enc(m)
c1←$ SE.Enc(K, m)
c0←$ {0, 1}|c1| ; Return cb

Figure 1: Games used in defining PRF security of function family F (left) and IND$-security
of symmetric encryption scheme SE (right) against adversary A.

2.1 Structured Encryption
The following definitions follow Chase and Kamara’s formalism [CK10].

Data Types, Structured Encryption. A data type DT defines a domain set DT.Dom,
query set DT.Qrys, and a deterministic evaluation function DT.Eval : DT.Dom×DT.Qrys→
{0, 1}∗ ∪ {⊥}.

A structured encryption scheme StE for DT defines a non-empty key set StE.KS, token
length StE.tl, and the following algorithms:

• Randomized encryption algorithm StE.Enc which takes as input a data structure
DS ∈ DT.Dom and a key K ∈ StE.KS. It returns an encrypted data structure
ED ∈ {0, 1}∗.

• Possibly randomized token generation algorithm StE.Tok which takes as input a key
and a query q ∈ DT.Qrys, and it returns a fixed-length token tk ∈ {0, 1}StE.tl.

• Deterministic evaluation algorithm StE.Eval which takes as input a token and an
encrypted data structure, and returns a ciphertext c ∈ {0, 1}∗ or ⊥.

• Deterministic decryption algorithm StE.Dec which takes a key and a ciphertext, and
returns a query output s ∈ {0, 1}∗ or ⊥.

The correctness condition is that Pr[StE.Dec(K, c) = DT.Eval(DS, q)] = 1 where the
probability is taken over all K ∈ StE.KS, DS ∈ DT.Dom and q ∈ DT.Qrys and the
random variables are defined via ED←$ StE.Enc(K, DS), tk←$ StE.Tok(K, q), and c←
StE.Eval(tk, ED).

We often construct StE for complex data types from StE primitives which reveal query
results to the server. We refer to this class of StE as response revealing (RR) StE. More
precisely, an RR StE for DT is such that for all DS ∈ DT.Dom and q ∈ DT.Qrys we have
that DT.Eval(DS, q) = c = StE.Dec(K, c) (where the random variables are defined as in
the correctness condition).

While we allow StE.Eval and StE.Dec to return ⊥, this is to handle malformed input.
In this work, we leave implicit the handling of such in pseudocode and assume no queries
will trigger these behaviors.

Semantic security. CK defines adaptive semantic security for StE using game Gss
StE,L,S

where L,S are the leakage algorithm and simulator respectively. In Gss
StE,L,S(A), all three

algorithms (i.e. A,L,S) can be run in “setup” or “query” mode, as indicated using the
first argument (i.e. s or q).

The game proceeds in two phases, with the adversary providing a data structure in the
“setup phase” then making queries to that data structure in the “query phase”. We refer to

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 5

Game Gss
StE,L,S(A)

K←$ StE.KS ; b←$ {0, 1}
(DS, Sta)←$A(s)
If DS /∈ DT.Dom then return false
If b = 1

ED←$ StE.Enc(K, DS)
Else

(lk, St)←$ L(s, DS)
(ED, St′)←$ S(s, lk)

b′←$ATok(q, ED, Sta)
Return b = b′

Oracle Tok(q)
If q /∈ DT.Qrys

Return false
If b = 1

tk←$ StE.Tok(K, q)
Else

(lk, St)←$ L(q, q, St)
(tk, St′)←$ S(q, lk, St′)

Return tk

Figure 2: Game used in defining adaptive semantic security of structured encryption
scheme StE for data type DT with respect to leakage algorithm L and simulator S.

the output of the leakage algorithm in the first (resp. second) phase as the “setup leakage”
(resp. “query leakage”). The adversary’s goal is to distinguish the encrypted data structure
and tokens from those generated by a simulator using the leakage. The details of Gss

StE,L,S
are given in Fig. 2. The advantage of adversaryA is Advss

StE,L,S(A) = 2 Pr[Gss
StE,L,S(A)]−1.

Notice that with an RR scheme, in order for S to provide a realistic simulation of a
token for query q, the query leakage must include DT.Eval(q, DS) (the query response)
because this must be returned should the adversary run StE.Eval(tk, ED). Therefore, we
will assume that all leakage algorithm associated to RR StE schemes are such that if
(lk, St)←$ L(q, q, St) then lk = (DT.Eval(q, DS), lk′) for some lk′.

Multimap data structure. The multimap data type MMdt captures mappings from
labels to tuples of values. In particular, its domain elements are table mappings (as
defined above) which map all labels of some fixed bitlength MMdt.lLen to tuples of values
of fixed bitlength MMdt.vLen, and maps all other labels to (). We refer to these as
multimaps. The multimap query set is the label set while evaluation simply retrieves the
mapped tuple associated to a label. This means that MMdt.Qrys = {0, 1}MMdt.lLen and
MMdt.Eval(M, ℓ) = M[ℓ].

In this paper we will assume all multimaps come from the MMdt with appropriate length
values, which we abbreviate to lLen, vLen and sometimes leave implicit. In pseudocode,
uninitialized multimaps are assumed to map all ℓ ∈ {0, 1}lLen to (). While other definitions
may not have required fixed-length labels or values, ours loses no generality because values
may be padded or broken up into equal length blocks while labels may be hashed to a
common length.

Multimap encryption. StE for MMdt is a key primitive used to build more complex
StE schemes. We will refer to these as multimap encryption (MME) schemes. As above,
each MMdt has an implicit value of lLen, vLen associated to it. Therefore, each MME
scheme need only support a constant implied label length and value length.

As discussed in Section 1.1, a large number of MME primitives have been proposed
in the searchable encryption, secure indexing, encrypted databases and StE literature.
While none of our schemes require specific MME primitives nor leakage profiles, it is still
useful to contextualize the security of schemes using the leakage profile of state-of-the-art
schemes from the literature. Intuitively, the setup leakage of this profile reveals the total
number of values in the multimap. The query leakage are the query and access patterns.
The former is the equality pattern of the queries made thus far. The latter is the query

6 Structured Encryption for Indirect Addressing

response for RR schemes, and the number of values returned otherwise. In Appendix A
we give a full description of these leakage profiles and examples of MME schemes which
achieves them. These are derived from the popular SSE scheme

∏
bas (2Lev in the Clusion

library) by CJJ+ [CJJ+14, Lab20].

3 Indirectly Addressed Encrypted Multimaps
We now show how multimaps with indirect addressing can be captured as a data type. We
illustrate some of the issues of constructing StE for IA, which we call “indirectly addressed
multimap encryption schemes” (IA-MMEs), via two strawman constructions. In addition
to generalizing the “multimap chaining” technique of AC [CK10], our IA-MME syntax
allows us to elegantly and simply capture many desired StE functionalities. We discuss
some such schemes in Section 6 in the area of searchable encryption and SQL StE.

We then demonstrate the utility of such a primitive by capturing Searchable Encryption
(as defined by CGKO [CGKO06]) and “chained multimaps” (as defined by AC [CK10]) as
special cases of it.

Indirect addressing data type IA. Much like MMdt, IA also involves fixed-length
labels and values, but now we require they all be of some common length len. For the
same reasons as those presented in Section 2, this simplifying assumption does not hurt
the generality of our formalism.

Intuitively, indirectly addressed multimaps (IA-MMs) can be seen as directed acyclic
graphs (DAGs) with nodes for each label and value. Edges may point from labels to either
values or other labels. When a label is queried, the graph is traversed starting from that
node and returns all descendant leaf (i.e. value) nodes. Note that the acyclic requirement
is to ensure that this evaluation terminates.

More formally, IA.Dom contains multimaps with lLen = len and vLen = len + 1 while
IA.Qrys = {0, 1}len. When IA.Eval(M, ℓ) is called, it recursively accesses the multimap,
interpreting the values with leading bit 0 as values (which can be returned as is) and
those with leading bit 1 as labels (which prompts the recursive access). In Fig. 3, we
depict (part of) an example IA-MM as a DAG (specifically M where M[ℓ1] = (1∥ℓ2, 1∥ℓ3),
M[ℓ2] = (0∥v1) and M[ℓ3] = (0∥v2, 0∥v3)) and provide the full pseudocode for IA.Eval.
Notice that in the example, IA.Eval(M, ℓ1) = (v1, (v2, v3)).

Depth. The number of “layers” of indirect addressing in an IA-MM is measured using a
function depth. It can be used to measure the depth of some query ℓ in M ∈ IA.Dom, via
depth(M, ℓ). In the DAG, this corresponds to the maximum length path beginning at ℓ.
Sometimes, it is useful to describe the maximum depth of all labels in the IA-MM. We call
this the “depth of M” and expand our earlier notation to denote this with depth(M). In
the DAG, this corresponds to the maximum length path.

The precise definition of these algorithms are:

Alg depth(M, ℓ)
(b1∥x1, . . . , bn∥xn)←M[ℓ]
If b1 = · · · = bn = 0 then return 1
else return

(
1 + max

i∈[n],bi=1
depth(M, xi)

)
Alg depth(M)
Return max

ℓ∈{0,1}len
depth(M, ℓ)

Note that in the example visualized in Fig. 3 we have depth(M, ℓ1) = 2, depth(M, ℓ2) =
1, and depth(M) = 2.

In our IA-MME schemes we will assume that the M to be encrypted have some
predetermined and finite maximum depth IA.dp. In other words, we require that all

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 7

Alg IA.Eval(M, ℓ)
(b1∥x1, . . . , bn∥xn)←M[ℓ]
For i ∈ [n] do

If bi = 0 then vi ← xi else vi ← IA.Eval(M, xi)
Return (v1, . . . , vn)

Figure 3: Evaluation algorithm for IA data type (left), and graphical visualization of
M ∈ IA.Dom with M[ℓ1] = (1∥ℓ2, 1∥ℓ3), M[ℓ2] = (0∥v1) and M[ℓ3] = (0∥v2, 0∥v3) (right).

M ∈ IA.Dom have depth(M) ≤ IA.dp. To avoid degeneracy (to MMdt), we assume that
IA.dp ≥ 2.

Uniformity. We say that M ∈ IA.Dom is uniform if all the values associated to each label
have the same depth. In other words, for all ℓ ∈ {0, 1}len where M[ℓ] = (b1∥x1, . . . , bn∥xn),
we expect that either b1 = · · · = bn = 0 (i.e. they are all values) or b1 = · · · = bn = 1
and depth(M, x1) = · · · = depth(M, xn). For example, multimaps from the multimap data
type are all uniform, depth-1 IA-MMs while M depicted in Fig. 3 is a uniform, depth-2
IA-MM.

As we show later, some IA-MME techniques only work with uniform IA-MMs. Since
this may suffice for some applications, we capture this as a data type UIA so that we
can define StE for it. UIA is identical to IA except UIA.Dom contains only the uniform
IA-MMs.

Strawman 1: naïve encryption. A natural first instinct toward constructing IA-MMEs
(StE for IA) would be to simply encrypt M ∈ IA.Dom using an MME scheme MME. This
achieves some intuitive notion of security since MME is secure and M is itself a multimap.
Notice that we would want to use non-RR MME here, to avoid leaking the ℓi and vi to
the server.

A problem crops up, however, when one tries to query this encrypted data structure.
Consider what happens when computing IA.Eval(M, ℓ1) in the example depicted in Fig. 3.
If the token MME.Tok(K, ℓ1) is presented to the server, the best it can do is return the
client a ciphertext which decrypts to (1∥ℓ2, 1∥ℓ3). The client would need to then generate
the tokens for ℓ2, ℓ3 and query the server with those to compute M[ℓ1]. More generally,
this solution would require depth(M, ℓ) rounds of communication between the client and
server to retrieve IA.Eval(M, ℓ1). This added communication can increase bandwidth and
latency in practice and, as we demonstrate later, is unnecessary.

Strawman 2: inlined payloads. A second natural approach would be to do away with
the indirect addressing entirely and inline the values within M. In our example, this would
mean transforming M into the multimap M′ where M′[ℓ1] = (v1, (v2, v3)), M′[ℓ2] = (v1),
and M′[ℓ3] = (v2, v3). These values should be padded so vLen is equal to |(v2, v3)|, before
M′ is encrypted with an MME scheme. This can be queried in a single round using the
MME.

This approach is both correct and secure but we lose any storage efficiencies that
indirect addressing afforded us. In existing applications making use of such data structures
(e.g. those discussed below), many depth-1 labels are associated with a long tuple of values,
and are “pointed to” by multiple labels of higher depth. For example, in SSE, this would
entail to storing one copy of each document for each keyword that it is associated to. In
the worst case, inlining a depth-n IA-MM could lead to a power-of-n blowup in storage.
As such, this solution is also unsatisfying.

8 Structured Encryption for Indirect Addressing

4 Layered-Multimap Approach
We extend the “multimap chaining” technique from the literature to an IA-MME technique
that we call “layered multimaps” (LMM). In doing so, we identify an issue that prevents
the security of LMM schemes from being proven in full generality and provide a sufficient
condition on the MME primitives – content oblivious leakage algorithms – to recover this
proof approach. Multimap chaining schemes in the literature (e.g. LabGraph, SPX, and
OPX) do not address this issue, so their proofs are technically incorrect and can be restored
with the addition of our condition.

In Section 5, we present an IA-MME technique with strictly better leakage. So we
focus on the intuition of LMM and the sufficient condition that restores proofs from prior
work. A full discussion on LMM can be found in Appendix B, where we both illustrate
some of the issues that have come up in prior work and how they can be resolved simply.

LMM approach for uniform, depth-2 IA-MMs. The multimap chaining approach
of prior work is equivalent to the handling of depth-2, uniform IA-MMs. We will capture
this as LMMu, an StE scheme for UIA where UIA.dp = 2.

The scheme LMMu will index a depth-2, uniform IA-MM M using two multimaps
M1, M2. M1 is a copy of all the depth-1 mappings in M (i.e. if depth(M, ℓ) = 1 then
M1[ℓ] = M[ℓ]). This will be encrypted using MME scheme MME1. M2 contains all other
(i.e. depth-2) mappings in M. However, instead of mapping these to other (depth-1) labels,
they will be mapped to tokens for accessing that label using MME1. M2 will be encrypted
using RR MME scheme MME2.

When a query ℓ is made, the token generation algorithm will return the tokens to
access ℓ with both MME primitives (since the token generation algorithm need not “know”
the depth of ℓ). If depth(M, ℓ) = 1, a ciphertext can be retrieved from the encrypted
M1. If depth(M, ℓ) = 2, the encrypted M2 will return a tuple of tokens (since it was
encrypted with an RR scheme) which can then be used to query the encrypted M1 to
retrieve ciphertexts. In either case, MME1.Dec can be used to retrieve UIA.Eval(M, ℓ).

Extending LMMu to LMM. We can extend the LMM technique from uniform, depth-2
IA-MMs to arbitrary IA-MMs. The result of this is LMM, StE scheme for IA with no
restrictions on depth.

Extending LMMu, LMM will index an IA-MM M with depth(M) = D multimaps. Each
Mi will index the queries of depth i and be encrypted with MME scheme MMEi, where
MME2, . . . , MMED are RR. For i ≥ 2, the labels (i.e. values where bi = 1) in Mi will be
replaced with tokens prior to encryption. We derive keys for all MME primitives using a
function family in the standard way.

We embellish LMMu in two ways in this extension. First, alongside each token in the
D − 1 RR multimaps, we include a depth-indicator for the location to points to. This
improves efficiency by “telling” the server which multimap to subsequently access with
that token. Additionally, while LMMu tokens were made out of two MME tokens, we can
do better than sending D such tokens in LMM. Instead, we use an additional multimap
M0 to index which token to use and which multimap to access for each possible client
query. The client can then just send the one token needed to access M0.

We provide the full pseudocode and security analysis of LMM in Appendix B.

Technicality in LMM proof. Unfortunately, the LMM construction cannot be proven
secure in full generality. Prior work’s approach to the proof of LMMu’s security involves
composing the leakage algorithms (resp. simulators) for MME1, MME2 to a single algorithm
L (resp. S), then “proved” LMMu secure under L,S. The problem arises in the definition
of S, where the two constituent simulators need to “work together” at query time to

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 9

Game Gobliv
L (A)(

M1, M2, (ℓ1, . . . , ℓn)
)
←$A

For i = 1, 2 do
(lk0

i , Sti)←$ L(s, Mi)
For j ∈ [n] do

(
(v, lkj

i), Sti

)
←$ L(q, ℓj , Sti)

Return
(
(lk0

1 ̸= lk0
2) ∨ · · · ∨ (lkn

1 ̸= lkn
2)

)
Figure 4: Game used to define content obliviousness of leakage algorithm L. Here, we
assume that the adversary provides M, M′ which are homomorphic, and ℓ1, . . . , ℓn ∈
DT.Qrys.

return tokens to depth-2 labels which must be able to recursively access the simulated
data structures. (If such an access cannot be done, the adversary can trivially distinguish
this from the genuine StE algorithms). The constituent simulator’s lack of shared state
make them unlikely to present consistent output. So if these simulators were instantiated
pathologically, there will be no way to build a secure LMMu even with secure primitives.
In Appendix B, we present this proof approach in full and discuss how a pathological
primitive would scuttle the proof.

Homomorphic multimaps, content oblivious leakage. In order to resolve the above
proof issue for schemes with the LMM approach, we make a sufficient assumption on the
leakage algorithm associated to the RR MME schemes which we call content obliviousness.
Since our condition has to do with how the leakage algorithm treats multimaps of the
“same shape,” we start by giving a formal definition of this. This is used critically in our
corrected proofs (Theorems 3 and 4).

Specifically, we say that two multimaps M1, M2 ∈ MMdt are homomorphic if the
tuples mapped to by each label are of the same length (i.e. #(M1[ℓ]) = #(M2[ℓ]) for all
ℓ ∈ {0, 1}lLen). In other words, if M1[ℓ] = (v1, . . . , vn) then M2[ℓ] must also be a tuple of
n (not necessarily identical) values.

Let MME be an RR MME scheme used in any LMM scheme (i.e. LMMu or LMM), with
leakage algorithm L. Then, L is content oblivious if homormorphic multimaps have the
same leakage (modulo query responses). We capture this precisely in the game Gobliv

L in
Fig. 4, where L is a leakage algorithm. The game also assumes that the adversary provides
homomorphic M, M′ and ℓ1, . . . , ℓn ∈ DT.Qrys. We say that L is content oblivious if
Pr[Gobliv

L (A)] = 0 for all adversaries A. Note that our notion assumes a leakage algorithm
consistent with an RR MME scheme (in particular, that query leakage contains v = M[ℓj]).
We believe that analogous definitions for other MME are of independent interest, but in
our work we only require this of RR MME schemes.

Since the “standard” leakage profile (discussed in Section 2.1) has content oblivious
leakage, so do all state-of-the-art RR MME schemes (including MMEr

π in Appendix A).
This condition is sufficient to prove the security of LMMu and LMM. For completeness, we
provide these proofs in Appendix B.

It is worth noting that content obliviousness is a sufficient condition to resolving the
proof issue. Specifically, conditions could be placed on the simulator for the proof to
go through even for some non-content oblivious RR MME, by requiring the simulator
“behaves well” when the leakage input is substituted in the proof. Nevertheless, we believe
our content obliviousness assumption is simpler to use in practice because it only concerns
the leakage profile which can often be deduced by seeing the scheme in action. A condition
based on the simulator is more opaque to someone who does not work through the proof
details. Additionally, all state-of-the-art schemes are already content oblivious. For these

10 Structured Encryption for Indirect Addressing

reasons, we leave open the problem of finding the necessary leakage properties and other
simulator properties that allow this proof technique to go through. We see it as a problem
of theoretical rather than practical interest.

Implications for prior work. We identified three schemes in the literature where the
above “proof bug” occurs, LabGraph, SPX and OPX. We discuss the specific issues in their
proofs, and the insufficient assumptions made therein in Appendix C. These results can
be restored by assuming that the RR MME primitives are content oblivious. This also
means that existing systems using these results are still “secure” so long as they used
state-of-the-art primitives. Theorems 3 and 4, in Appendix B, contain the necessary formal
fixes that recover the claimed results from prior works.

Discussion. Before moving on, we draw attention to a couple of strengths and weaknesses
of the LMM approach. On the one hand, it can efficiently and securely realized using
existing MME primitives. In particular, it avoids the pitfalls of the two naïve techniques
proposed in Section 3.

However, the use of multiple data structures in the LMM approach is unsatisfying
for a number of reasons. First, the adversary learns about the relative size of the layers
and deduce information about the “structure” of the IA-MM. Second, for non-uniform
IA-MMs, the M0 index and depth indicators in the RR multimaps have to be used to
“tell the server” which data structure it should be searching on. Both of these add to the
complexity and overhead of the scheme.

In this, we see a common thread: if we are able to index and encrypt M as a monolithic
data structure instead of splitting it into several multimaps, we would avoid the above
weaknesses. The challenge is doing so using simple primitives and without added overhead
or complexity. This is the focus of our next section.

5 Single-Multimap Approach
In Section 4, we suggested that the LMM could be improved by indexing the entire IA-MM
using a single monolithic encrypted multimap. To realize this intuition, we require a
multimap encryption primitive with expanded functionality (response-flexible MME) and
stronger security (TV-security). We explore these properties in detail, since they have
nuanced definitions, interesting leakage implications and are non-trivial to construct. We
then use such MME to construct SMM, the IA-MME employing the single-multimap
(SMM) approach.

5.1 Response-Flexible MME
Recall that in the LMM approach, we used different MME schemes to encrypt tokens and
values so that the tokens could be revealed to the server at query time. If we want to
collapse all this indexing into a single multimap, we need an MME scheme which reveals
the intermediate tokens to the server but not the final values. To achieve this, we start by
defining a new type of MME which we call response-flexible (RF) MME.

Syntax. For precision, we need to modify the multimap data type slightly so that one
bit of each value can be used to indicate the desired response type. This creates the RF
data type RFdt which has the same domain and query set as MMdt but its evaluation
omits the indicator bit. In other words,

M[ℓ] = (b1∥v1, . . . , bn∥vn) =⇒ RFdt.Eval(M, ℓ) = (v1, . . . , vn).

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 11

For consistency, we will let lLen refer to the length of vi (not bi∥vi).
Now suppose MMEf is an StE for RFdt. We say that MMEf is RF if its evaluation

reveals the indicator bit of all values, and the remaining bits of those with bi = 1. In other
words, for M[ℓ] as above, if ED←$ MMEf .Enc(K, M) and tk←$ MMEf .Tok(K, ℓ) we have:

MMEf .Eval(tk, ED) = (b′
1∥u1, . . . , b′

n∥un) where
{

b′
i∥ui = bi∥vi if bi = 1,

b′
i = bi if bi = 0.

The final requirement we make is on the decryption algorithm. Since the evaluation
output is a tuple which may contain some unencrypted values, we will assume the existence
of a decryption algorithm that works on a per-value basis. More precisely, we need that
MMEf defines algorithm MMEf .Dec1 where

MMEf .Dec
(
K, (b1∥c1, . . . , bn∥cn)

)
= (u1, . . . , un)

where
{

ui = ci if bi = 1
ui = MMEf .Dec1(K, ci) if bi = 0.

RF MME Constructions. Before we start building RF MME, we give some intuition
as to the leakage profile that one should expect of such a scheme. Notice that if all values
in M have bi = 1, the scheme is functionally equivalent to an RR MME. Therefore, one
may expect that state-of-the-art RF leakage profiles are equivalent to the analogous RR
profile, except in the query leakage. In particular, if the query output is (b1∥v1, . . . , bn∥vn),
the RR scheme would have returned (v1, . . . , vn) as part of the leakage and the RF scheme
would return only the vi where bi = 1.

This intuition hints at our approach to building RF MME – from RR MME. Many RR
MME schemes in the literature will encrypt the values associated with each label using
a differentiated key. This key is used by the server to recover said values at query time.
These schemes can be adapted to achieve response flexibility by only encrypting the RR
values with the differentiated key, and encrypting the other values using a key which is
not given to the server. This is exactly our approach to extending our RR variant of the∏

bas SSE scheme to the RF variant MMEr
π in Appendix A. In Section 5.2, we will show

that MMEf
π is secure under the stronger TV-security notion. In particular, Theorem 1

subsumes the proof of MMEf
π’s semantic security.

One might hope for a more generic transform that converts RR to RF MME schemes
while maintaining semantic security. This is indeed possible, as we demonstrate with our
transform RfT in Appendix D which takes an RR MME scheme MMEr and symmetric
encryption scheme SE and returns RF MME MMEf . Intuitively, MMEf will encrypt the
values which need to be hidden under a key that is kept secret from the server, before it
proceeds with encryption under MMEr. At query time, MMEr.Eval will peel back its own
layer of encryption but it will only see these encrypted values, which can be decrypted
during MMEf .Dec. As one would expect, a reduction can be given from MMEr and SE’s
security to MMEf ’s under a leakage profile something like the one described above. The
proof of this is a bit involved, so we defer a full discussion on RfT to Appendix D, where
we provide the full pseudocode, leakage profiles and a proof in the stronger TV-security
model (which we will define in Section 5.2).

We also briefly mention that using RfT with non-pathological RR MEE schemes will
usually lead to data being wrapped in two layers of encryption. In practice, it would be
better to replace the former layer with the latter (as we did in MMEf

π).

Discussion. We believe the idea of response flexibility is of independent interest, so
we highlight some alternate syntax that we considered which future work may look into.
Intuitively, the goal of response flexibility is to allow a data structure to support both

12 Structured Encryption for Indirect Addressing

revealing and non-revealing query responses. In the approach above, we assume that each
value in the multimap is annotated with the desired response type. An alternate approach
would be to annotate labels instead of values, thereby requiring that the client decide, at
setup time, whether each tuple in the multimap will be revealed (in entirety) at query time
or not. This approach loses some of the fine-grain control over response types that the
former approach had, but may allow for constructions with less leakage. Future work could
look into this to improve the security of applications which do not need such fine-grained
control (e.g. uniform IA-MMs).

Both of the above approaches rely on the intrinsic structure of a multimap and are
difficult to extend to StE in general. However, we believe an RF analog of RR StE would
enrich the entire StE framework. One approach to doing this would be to have a syntax
where the client indicates during token generation whether the response should be revealed
or not. This has the added advantage that the client can delay the decision of whether
responses should be revealed till query time, unlike the above approaches. This added
flexibility may be useful in some applications.

While these alternate approaches have their merits, we went with the fine-grained variant
because it allowed for the most storage efficient and straightforward SMM construction.
Intuitively, only the fine-grained approach allows each entry (i.e. mapping of label to
values) in the IA-MM to be captured as a single entry in the Mi indexes computed during
the setup phase. Future work could also explore leakage reduction in this fine-grained
setting. In particular, one might extend techniques used to hide the volume and ordering
(with respect to the revealed values) of the non-RR values.

5.2 MME Security with Token Values
A challenge in adopting the SMM approach is that a multimap will contain tokens generated
under the same key that it will be encrypted with. This is so that the server can perform
the necessary recursive lookups using a single data structure. Proving the security of
SMM based on a semantically secure MME scheme runs seems out of reach, because there
are pathological MMEs that misbehave when they encrypt key-dependent tokens. As a
convenience in the proof, we define a stronger assumption on MMEs which we call adaptive
security in the presence of token-values (or TV-security).

TV-security. This notion extends the semantic security definition given in Section 2.1
but applies only to MME (not to all of StE, nor specifically to IA-MM). The security game
for defining TV-security for MME is Gtv

MME, depicted in Fig. 5. Intuitively, the game is
similar to Gss

MME but when the adversary provides a multimap M they may request that
some of the values therein be tokenized before encryption. We require that the values to
be tokenized form no cycles when the multimap is viewed as a directed graph.1 In the
“real world” this tokenization is done using MME.Tok prior to encryption with MME.Enc.
In the “ideal world” the leakage algorithm gets M and simulator must construct something
comparable to this encryption output. The adversary indicates whether a value should
be tokenized using the first bit in each multimap value. The algorithm Search is called
recursively in the game to check that the graph visualization of M is acyclic. Note that
in the game we assume lLen = MME.tl and vLen = MME.tl + 1 for M given by A. The
advantage of adversary A is Advtv

MME,L,S(A) = 2 Pr[Gtv
MME,L,S(A)]− 1.

Recall that the values in RF MME have a similar indicator bit in their data structure
(thereby making it a slightly different data type). In our notion of TV-security for RF
MME, we use the same indicator bit to indicate response type (for response flexibility)
and tokenization (for TV-security). Intuitively, this restricts our study of TV-secure

1This restriction is sufficient for IA and gets around a technical issue in the simulation sketched in
Appendix E.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 13

Game Gtv
MME,L,S(A)

K←$ MME.KS ; b←$ {0, 1}
(M, Sta)←$A(s)
If b = 1 then

For ℓ ∈ {0, 1}lLen do
If Search(M[ℓ], {ℓ}) then return false
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

If bi = 1 then vi←$ MME.Tok(K, vi)
M1[ℓ]← (b1∥v1, . . . , bn∥vn)

ED←$ MME.Enc(K, M1)
Else

(lk, St)←$ L(s, M) ; (ED, St′)←$ S(s, lk)
b′←$ATok(q, ED, Sta) ; Return b = b′

Oracle Tok(ℓ)
If b = 1 then

tk←$ MME.Tok(K, ℓ)
Else

(lk, St)←$ L(q, ℓ, St)
(tk, St′)←$ S(q, lk, St′)

Return tk

Alg Search((b1∥v1, . . . , bn∥vn), S)
For i ∈ [n] do

If bi = 1 then
If vi ∈ S then return true
If Search(M[vi], S ∪ vi)

then return true
Return false

Figure 5: Game used in defining adaptive TV-security of multimap encryption scheme
MME with respect to leakage algorithm L and simulator S.

response-flexible scheme to those where values are response revealing if and only if they
are tokens. This notion is a perfect fit for our SMM construction because the TV-security
game essentially builds an IA-MM. While a more general definition of TV-secure RF MME
can be given with separate indicator bits, this introduces too many confusing details in
defining and proving TV-security (e.g. the ordering of tokenization and encryption, if both
are needed), so we leave the general treatment for future work to explore.

TV-secure MME leakage. Since our TV-security game is still a simulation-based one,
we now give some intuition about what kind of leakage a TV-secure MME scheme should
aim for. In particular, given the leakage profile of state-of-the-art scheme MME (in the
standard model), what analogous leakage algorithm should we hope to prove it TV-secure
under?

One might notice that the multimaps encrypted in the standard and TV-security games
(i.e. M, M1 respectively) are homomorphic. So one might hope that, using state-of-the-art
schemes with content oblivious leakage, the profiles would be equivalent. However, the
TV-leakage profile needs to simulate the tokens requested by the adversary as well as the
tokens values (in the multimap) should the adversary choose to evaluate the token he gets
on the encrypted data structure. Because the query leakage associated to token values
should be in the TV-security profile but not in the standard profile, one should not expect
the same scheme to achieve the same leakage in both games.

Along this line of thought, one might expect that the leakage associated to all token
values must be included in the TV-security profile so that the simulator can generate ED.
However, this is also an erroneous intuition because this is equivalent to revealing the
query leakage associated to all these tokens during the setup phase which makes no sense
because no queries have been made.

These observations lead us to the correct intuition regarding the TV-security leakage
profile. Its setup leakage should be comparable to the standard case. When a query is
made, the query leakage of that query and all its descendants (in the graph visualization)
should be revealed. This is more than the standard case which would only leak the initial
query. We give a concrete example of such a profile in Appendix E, for the RF variant of
the

∏
bas scheme.

14 Structured Encryption for Indirect Addressing

Constructing TV-secure RF MME. Many MME schemes from the literature satisfy
this stronger notion of security, with the appropriate modifications to their leakage
algorithm and simulator to accommodate the tokenization. This includes the schemes in
Appendix A. In particular, the proofs of

∏
bas’s (standard) semantic security given by

CJJ+ and JT [CJJ+14, JT20] can be extended to one of TV-security for our response
flexible variant MMEf

π under similar conditions (namely, that the proof is in the random
oracle model and that SE is instantiated with a “one-time pad form” scheme such as CTR
mode). In particular, we prove the following in Appendix E, along with providing the
relevant definitions.

Theorem 1. Let MMEf
π and Lf be the scheme and leakage respectively described in Figure

18 using PRF F, symmetric encryption scheme SE, and ideal primitives P1 and P2. Then,
given adversary A and simulators Sprf , Skp one can define Sf ,A1, A2,A3 such that:

Advtv
MMEf

π,Lf ,Sf ,P1,P2
(A) ≤ Advprf

F,P1
(A1) + Advsim-ac-prf

F,Sprf ,P1
(A2) + Advsim-ac-kp

SE,Skp,P2
(A3).

Proof overview. The security notions used in this reduction, SIM-AC-PRF and SIM-AC-
KP, refer to security under adaptive compromise. Both are extensions of the PRF and
key private (KP) games into this setting, adapted from the definitions given in [JT20]. In
Appendix E, we give the full definitions for the theorem above and show how the proof of
Theorem 1 is obtained by modifying the proof of Theorem D.1, in [JT20], with additional
leakage Lf

π, detailed in Fig. 18. We omit the details from the main body for brevity, but
we outline the key techniques here.

The proof consists of 3 game transitions, corresponding to each of the advantage terms
in the proof statement, with the initial game being the real game with two oracles accessed
through an oracle Prim (one for F and the other for SE).

The first hybrid game G1 replaces the PRF F used to generate the keys K1,ℓ and
K2,ℓ with a random function and is reduced to the advantage of a PRF adversary. This
transition does not require any random oracle programming and so can be done with the
standard game.

Next, in G2, we replace the encryption scheme SE with a simulated (programmed)
random oracle. In this transition, the computation of K1,ℓ is not performed at the setup
phase, and instead the ciphertexts are generated randomly. Instead, the sampling is
performed in the tokenization phase, and the random oracle is programmed so that the
ciphertext from setup decrypts to this value. This game hop requires a reduction to a
security definition that captures a programmable random oracle. Rather than proving
security in the random oracle model, we formally reduce to the SIM-AC-KP game to clarify
the type of programming that must be done.

The final game transition moves the sampling of K2,ℓ into the tokenization phase, like
we did with K1,ℓ. As these keys are used to essentially randomly place ciphertexts for
specific indices in the T at setup, we must again use (the other) programmable random
oracle. This means that ciphertexts are stored at random locations, and then later, at
query time, the oracle is programmed to output the random values sampled at setup under
the freshly sampled key K2,ℓ. Again, rather than using a random oracle, we explicitly
reduce to the SIM-AC-PRF game, clarifying how a random oracle must be used.

After this final game transition is done, we arrive at a game that can be run by the
simulator under the given leakage profile. The important aspect was moving the token
sampling from Setup time to tokenization game, because the leakage profile does not reveal
the structure of the ciphertext addresses until queried.

Other MME techniques from the literature also suffice to construct TV-secure MME. In
particular, if one wishes for security outside the RO model, one could use pseudorandomly
generated plaintext masks in place of encryption (in the style of CK’s scheme Matrix
[CK10]) or generate one token per value (the extension suggested by CJJ+ to MMEπ).

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 15

Alg SMM.Enc(K, M)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

If bi = 1 then
vi←$ MMEf .Tok(K, vi)

M′[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEf .Enc(K, M′)
Return ED

Alg SMM.Tok(K, ℓ)
tk←$ MMEf .Tok(K, ℓ) ; Return tk

Alg SMM.Eval(tk, ED)
(b1∥v1, . . . , bn∥vn)← MMEf .Eval(tk, ED)
For i ∈ [n] do

If bi = 1 then ti ← SMM.Eval(vi, ED)
else ti ← vi

Return
(
(b1, t1), . . . , (bn, tn)

)
Alg SMM.Dec

(
K, ((b1, t1), . . . , (bn, tn))

)
For i ∈ [n] do

If bi = 0 then ui ← MMEf .Dec1(K, ti)
else ui ← SMM.Dec(K, ti)

Return (u1, . . . , un)

Figure 6: Algorithms for IA-MME scheme SMM (i.e. StE for IA) using the SMM technique.
Here, MMEf is a response-flexible MME scheme as defined in Section 5.

While a more general result (say, constructing TV-secure schemes from those secure
under standard assumptions) would be desirable, we found this tricky to obtain. When
moving from the standard security to the TV games, the behavior of the simulators quickly
becomes undefined. For example, in the standard security game, the simulator is never
asked for tokens before it generates a multimap. So, attempting to give a generic reduction,
from standard to TV security seems to require at least one assumption about the simulator.
And, unfortunately, this assumption is not enough to allow a proof to go through, there
are many ways a degenerate simulator can break a generic proof.

After some effort, it seems the assumptions one has to make on the simulator (and
consequently the scheme) for a generic reduction make the proof almost trivial (i.e. nearly
assuming you have a simulator for the TV game). So, instead of presenting a generic
reduction, we focus on a specific scheme and leave the target of TV-security open for
particular schemes.

5.3 Indirectly Addressed MME SMM
SMM details. Now we are ready to present the details of the SMM approach. Intuitively,
this approach is similar to the LMM one except that we now generate all the recursively
accessed tokens using RF MME scheme MMEf and store the contents of all the Mi (in
LMM) in a single multimap M′ which will also be encrypted with MMEf .

This gives us IA-MME scheme SMM whose algorithms are depicted in Fig. 6. The
pseudocode is given in Fig. 6, where SMM.KS = MMEf .KS, and lLen = len, vLen = len+1 =
MMEf .tl + 1 for M1.

SMM’s security. One can notice that on the same multimap and queries, the SMM
algorithms and “real world” of the TV-security game generate ED, tk in the exact same
way. Additionally, the leakage algorithm and simulator in the TV-security game for MMEf
and the semantic security game of SMM are also essentially doing the same this. As such,
the following result follows directly from the respective security definitions and a proof is
omitted for brevity though we briefly sketch the main ideas from the proof.

Theorem 2. Let SMM be the IA-MME scheme for IA defined in Fig. 6 which uses RF
MME scheme MMEf as a primitive. Then, given adversary A we have that one can define
A1 such that:

Advss
SMM,L,S(A) ≤ Advtv

MMEf ,L,S(A1).

16 Structured Encryption for Indirect Addressing

Proof overview. The reduction for this theorem is almost immediate from the definitions
as they’re given. First, notice that the syntax for the games are the same, in both, an
adversary only submits some data structure, receives and encrypted data structure, and
then has access to a token oracle Tok before it outputs a single bit. We focus on the real
side of both games as the ideal versions run the exact same code with the L and S being
unchanged.

When A outputs a data structure with some leading bits bi = 1, then A1 can forward
that data structure without modification in the TV-game. Then, the received encrypted
data structure is exactly the same as though SMM had run its encryption scheme, i.e., each
leading bit value 1 is tokenized and others are just encrypted, as this is part of the
TV-security game. One caveat is that A1 must manually run the searching algorithm to
make sure A did not submit a circular data structure, and this can be done efficiently.
Then, each of the tokenization calls just calls the underlying multi-map scheme and is
exactly the same between the semantic security and TV-security games. So, A1 perfectly
simulates the game for A in either case.

Discussion. In practice, we expect SMM to be superior to LMM.
In terms of leakage, the only case where the SMM approach is not strictly superior

is a degenerate one (e.g. depth(M) = 1) or a pathological one (with intentionally leaky
primitives). Using “standard” MME primitives (e.g. those in Appendix A), the SMM
approach avoids leaking the size of each layer and instead just leaks their sum (i.e. the
size of its monolithic index). Concretely, given M as input, the setup leakage (i.e. before
any queries are made) in the SMM approach is

∑
ℓ∈{0,1}len #(M[ℓ]), the number of values

in M. However, the LMM leakage is (n1, . . . , ndepth(M)) where ni =
∑

ℓ∈{0,1}len #(Mi[ℓ])
is the number of values in Mi, the multimap indexing all labels of depth i.

We believe that this difference in leakage is significant in a real-world use case. For
example, in LabGraph (CK’s scheme for searching over web graphs [CK10]), the difference
in leakage means an adversary can distinguish a dense web graph with few vertices from
a sparser web graph with more vertices before any queries are made. In Section 6, we
demonstrate this significance further in real-world use cases via simulations on realistic
data.

SMM is simpler, since the work to prepare M for encryption is drastically reduced
(as evidenced in a much shorter pseudocode of SMM (Fig. 6) compared to LMM (in
Appendix B)). There are fewer data structures on the server and differentiated keys on the
client side to manage at query time. The one-time cost of performing the security analysis
of specific MME schemes is worth the permanent complexity, security and efficiency savings
that comes with the SMM approach. And if the analysis is too much, one could choose to
use MMEf

π, which we have already analyzed in Appendix D.
Finally, we expect SMM to be more storage efficient in practice. In LMM, non-uniform

constructions need to include depth indicators, a complication that SMM can avoid. In
Section 6, we explore in our simulations how this overhead is significant even in relatively
low-depth IA-MMEs.

6 Applications and Simulations of IA-MME

The power of the indirect addressing abstraction is its ability to capture and simplify
complex StE schemes. In this section, we describe how indirect addressing can be used in
a wide range of real-world applications. We then perform simulations on realistic datasets
to concretize the efficiency and security gains of using IA-MME, and in particular, the
SMM construction.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 17

Searchable Encryption. CGKO first defined Searchable Symmetric Encryption (SSE)
as a document storage scheme [CGKO06]. Each document is associated with a long
payload and a set of keywords. When a keyword is queried, the payloads for all documents
associated to that keyword should be returned. This paradigm is used in the real-world in
currently running systems such as MongoDB’s Queryable encryption2 or Stealth Software’s
products.3

A first instinct might be to use a single multimap associating each keyword to the
payloads it should return. This means that SSE is realizable using just an MME scheme.
However, this is akin to using the “inlined-payloads” strawman solution presented in
Section 3. A better solution uses uniform depth-2 IA-MMEs, with keywords associated to
document identifiers at depth-2 and document identifiers associated to payloads at depth-1.
We formalize an SSE datatype and the two schemes in Appendix F as SEdt, SE1, SE2
respectively. In doing so, we can see the simplicity that comes with the IA-MME primitive
since SE2 (which uses indirect addressing) can be expressed with comparable ease to SE1
(which does not).

SQL StE schemes. Various recent works have used the StE framework to capture
certain classes of SQL queries, resulting in schemes such as SPX, OPX, FpSj and PpSj
[KM18, KMZZ20, CNR21]. The IA-MME primitive greatly simplifies and generalizes the
description of such schemes and be used to improve real-world implementations such as
KafeDB.4

To demonstrate this, we define a data type SQLdt which supports relation retrievals
and joins over SQL databases. Relation retrievals are queries of the form “select * from
[table]”. They let the client retrieve a single table from a database made out of many
tables. Joins are queries of the form “select * from [table1] join [table2] on [predicate]”.
These let the client retrieve pairs of rows from the cross product between two tables in
accordance with some predicate.

We define three StE schemes for SQLdt. In all three, depth-1 labels associate a unique
identifier to the contents of each row in the database. The schemes then use the upper
layers in different ways to index which rows (identified by their unique identifier) should
be returned in response to each possible query.

Our first two schemes FP2, PP2 capture the fully and partially precomputed join
indexing techniques of CNR, respectively [CNR21]. They both make use of uniform
depth-2 IA-MMs in their indexing, with the depth-2 labels associating a query to which
rows should be returned. FP2 is essentially equivalent to the schemes SPX, OPX, FpSj
when restricted to the same query support, while PP2 is analogously equivalent to PpSj.
The key difference between the two schemes is how they index join queries, with the latter
indexing rows from the two input tables separately and doing the join computation on
the client-side to reduce leakage, bandwidth and server storage. The full details of both
schemes can be found in Appendix G. We note that by abstracting out IA-MME, we make
the pseudocode of such schemes significantly simpler (compared to prior work). It also
allows for better modularity since one can instantiate the scheme using SMM, LMM or
any other IA-MME (unlike past work which strictly used multimap chaining).

Our IA-MME abstraction also inspired a new join indexing technique which has not
appeared in prior work, which we present now as PP3. The key observation is that real-
world joins often make use of every row in one or both of the input tables. In that case, one
could “reuse” a relation retrieval query index to index that half of the partially precomputed
join thereby saving server storage. This makes the data structure non-uniform and depth-3,
demonstrating the need for a generalized IA-MME beyond uniform and depth-2 use-cases.

2https://www.mongodb.com/library/queryable-encryption/queryable-encyption-technical-pap
er

3https://www.stealthsoftwareinc.com/experience/topics/
4https://zheguang.github.io/kafedb/

https://www.mongodb.com/library/queryable-encryption/queryable-encyption-technical-paper
https://www.mongodb.com/library/queryable-encryption/queryable-encyption-technical-paper
https://www.stealthsoftwareinc.com/experience/topics/
https://zheguang.github.io/kafedb/

18 Structured Encryption for Indirect Addressing

Data Scheme LMM SMM
M0 M1 M2 M3 M

2021 ePrint SE2 – 9.388e7 6.542e3 – 9.389e7
TPC-H (1GB) FP2 – 7.165e7 1.155e9 – 1.227e9
TPC-H (1GB) PP2 – 7.165e7 3.349e7 – 1.051e8
TPC-H (1GB) PP3 18 7.165e7 8.761e6 20 8.041e7

Figure 7: Selected simulation results computing the sizes of unencrypted data structures
when using LMM and SMM. Sizes are computed in blocks of 128-bits (black) or 130-bits
(in blue). These demonstrate that SMM leaks less and is more storage efficient.

Simulation Setups. To get an idea for the security and efficiency savings that come with
using IA-MME, we run some simulations for the schemes above. For our full simulation
methodology and results, see Appendix H.

We gathered two SSE document collections using the papers submitted to the IACR
Cryptology ePrint Archive in 2020 and 2021 [fCR22]. For each paper, the PDF submitted
to ePrint served as the document payload, while the SSE keyword(s) were those provided
by the authors at submission time. The two collections had 3188/3329 distinct keywords,
and 1584/1677 document payloads respectively.

For the SQL StE use-case, we generated 1 GB and 10MB databases using the TPC-H
benchmark [Tra23]. This database’s schema indicates ten relationships between columns
from eight relations which a client may wish to perform equijoins on. So we define the StE
query class to be exactly these eight relation retrievals and ten joins.

Indirect Addressing saves space. We use our simulations of SE1, SE2 to emphasize
that indirect addressing is much more storage efficient than the “inlined payloads” technique.

In our simulations, we assume that the client pre-processes all the documents such
that len = 128. We then measure the number of values in the data-structure (multimap
or IA-MM) prior to encryption with SE1, SE2. With the 2021 documents, SE1 will store
387, 841, 372 values in its multimap while SE2 will store 93,888,191 in its IA-MM, a
decrease of 75.79%. Likewise, for the 2021 documents, there is a decrease of 76.13% (from
378,100,870 to 90,236,426).

Assuming encryption changes these sizes only negligibly (true using standard primitives)
we see that indirect addressing is useful in a real-world application over naïve solutions
thereby justifying our IA-MME formalisms. This means, it could be used in place of
multimaps in many places that have some recursive stucture to their multimap application,
e.g., recent range searchable encryption proposals [FJK+15, DPP+16].

SMM’s advantages over LMM. We also simulated the size of server-side data struc-
tures for the schemes that use IA-MME, to compare the LMM and SMM approaches.
Some of our results are in Fig. 7.

We can use this to compare the difference in setup leakage of each scheme under LMM
and SMM. Using standard MME primitives (e.g. those in Appendix A), LMM would leak
all the sizes of each of its Mi while SMM leaks just that of M (i.e. the sum of the Mi for
i > 0). Our simulations show that this difference in leakage can be significant in a realistic
use-case. For example, with PP3 instantiated with LMM, the adversary learns during
setup time how many distinct queries there are (from M0) and the number of complete
joins (from M3,M0). The difference in leakage also allows an adversary to easily make
inferences about the data, for example, they may be able to deduce the average number of
keywords per document or rows per join with just a small amount of auxiliary data. With

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 19

SMM, the monolithic data structure will hide some of this frequency information making
such deductions hard or even impossible.

As mentioned in Section 4, for non-uniform IA-MME, each token stored in the LMM
multimaps needs to be accompanied with a depth-indicator. Our simulations show that
this is not an insignificant overhead. Even though PP3 only uses depth-3 schemes, this
incurs an additional 17,522,482 bits of storage on top of any additional metadata to support
the multiple data structures.

Finally, we note the superiority of PP3 on realistic datasets. This demonstrates that
our generalized IA-MME abstraction (beyond uniform depth-2 indirect addressing) allows
us to easily tweak StE schemes so they perform better in practice.

References
[AKM19] Ghous Amjad, Seny Kamara, and Tarik Moataz. Breach-resistant structured encryp-

tion. PoPETs, 2019(1):245–265, January 2019. doi:10.2478/popets-2019-0014.
[ANSS16] Gilad Asharov, Moni Naor, Gil Segev, and Ido Shahaf. Searchable symmetric encryp-

tion: optimal locality in linear space via two-dimensional balanced allocations. In
Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 1101–1114. ACM
Press, June 2016. doi:10.1145/2897518.2897562.

[ASS18] Gilad Asharov, Gil Segev, and Ido Shahaf. Tight tradeoffs in searchable symmetric
encryption. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 407–436. Springer, Cham, August 2018. doi:
10.1007/978-3-319-96884-1_14.

[Aut22] Anonymous Authors. Ia-mme simulations. https://github.com/IA-MME-StE/IA-M
ME-Simulations, 2022.

[BBO07] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently
searchable encryption. In Alfred Menezes, editor, CRYPTO 2007, volume 4622 of
LNCS, pages 535–552. Springer, Berlin, Heidelberg, August 2007. doi:10.1007/97
8-3-540-74143-5_30.

[BMO17] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private
searchable encryption from constrained cryptographic primitives. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 1465–1482. ACM Press, October / November 2017. doi:10.1145/3133956.31
33980.

[Bos16] Raphael Bost. Σoϕoς: Forward secure searchable encryption. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 1143–1154. ACM Press, October 2016. doi:10.1145/2976749.
2978303.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, EUROCRYPT 2006,
volume 4004 of LNCS, pages 409–426. Springer, Berlin, Heidelberg, May / June 2006.
doi:10.1007/11761679_25.

[CGKO06] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. Searchable
symmetric encryption: improved definitions and efficient constructions. In Ari Juels,
Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006,
pages 79–88. ACM Press, October / November 2006. doi:10.1145/1180405.1180417.

[CGPR15] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse
attacks against searchable encryption. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 668–679. ACM Press, October 2015. doi:
10.1145/2810103.2813700.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. Highly-scalable searchable symmetric encryption with sup-
port for Boolean queries. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,

https://doi.org/10.2478/popets-2019-0014
https://doi.org/10.1145/2897518.2897562
https://doi.org/10.1007/978-3-319-96884-1_14
https://doi.org/10.1007/978-3-319-96884-1_14
https://github.com/IA-MME-StE/IA-MME-Simulations
https://github.com/IA-MME-StE/IA-MME-Simulations
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1007/11761679_25
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700

20 Structured Encryption for Indirect Addressing

Part I, volume 8042 of LNCS, pages 353–373. Springer, Berlin, Heidelberg, August
2013. doi:10.1007/978-3-642-40041-4_20.

[CJJ+14] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-
large databases: Data structures and implementation. In NDSS 2014. The Internet
Society, February 2014. doi:10.14722/ndss.2014.23264.

[CK10] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 577–594.
Springer, Berlin, Heidelberg, December 2010. doi:10.1007/978-3-642-17373-8_33.

[CNR21] David Cash, Ruth Ng, and Adam Rivkin. Improved structured encryption for SQL
databases via hybrid indexing. In Kazue Sako and Nils Ole Tippenhauer, editors,
ACNS 21International Conference on Applied Cryptography and Network Security,
Part II, volume 12727 of LNCS, pages 480–510. Springer, Cham, June 2021. doi:
10.1007/978-3-030-78375-4_19.

[CT14] David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 351–368. Springer, Berlin, Heidelberg, May 2014. doi:10.1007/97
8-3-642-55220-5_20.

[DPP+16] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deligian-
nakis, and Minos Garofalakis. Practical private range search revisited. In Proceedings
of the 2016 International Conference on Management of Data, pages 185–198, 2016.
doi:10.1145/2882903.2882911.

[DPP18] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos Papamanthou. Search-
able encryption with optimal locality: Achieving sublogarithmic read efficiency.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 371–406. Springer, Cham, August 2018. doi:
10.1007/978-3-319-96884-1_13.

[fCR22] International Association for Cryptologic Research. Cryptology ePrint archive. https:
//eprint.iacr.org/, 2022.

[FJK+15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel-Catalin Rosu,
and Michael Steiner. Rich queries on encrypted data: Beyond exact matches. In
Günther Pernul, Peter Y. A. Ryan, and Edgar R. Weippl, editors, ESORICS 2015,
Part II, volume 9327 of LNCS, pages 123–145. Springer, Cham, September 2015.
doi:10.1007/978-3-319-24177-7_7.

[Goh03] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. URL:
https://eprint.iacr.org/2003/216.

[IKK12] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern dis-
closure on searchable encryption: Ramification, attack and mitigation. In NDSS 2012.
The Internet Society, February 2012.

[JT20] Joseph Jaeger and Nirvan Tyagi. Handling adaptive compromise for practical encryp-
tion schemes. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 3–32. Springer, Cham, August 2020. doi:
10.1007/978-3-030-56784-2_1.

[KM17] Seny Kamara and Tarik Moataz. Boolean searchable symmetric encryption with
worst-case sub-linear complexity. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 94–124. Springer,
Cham, April / May 2017. doi:10.1007/978-3-319-56617-7_4.

[KM18] Seny Kamara and Tarik Moataz. SQL on structurally-encrypted databases. In Thomas
Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part I, volume 11272 of
LNCS, pages 149–180. Springer, Cham, December 2018. doi:10.1007/978-3-030-0
3326-2_6.

[KM19] Seny Kamara and Tarik Moataz. Computationally volume-hiding structured encryp-
tion. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.14722/ndss.2014.23264
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-030-78375-4_19
https://doi.org/10.1007/978-3-030-78375-4_19
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1007/978-3-642-55220-5_20
https://doi.org/10.1145/2882903.2882911
https://doi.org/10.1007/978-3-319-96884-1_13
https://doi.org/10.1007/978-3-319-96884-1_13
https://eprint.iacr.org/
https://eprint.iacr.org/
https://doi.org/10.1007/978-3-319-24177-7_7
https://eprint.iacr.org/2003/216
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-030-56784-2_1
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-03326-2_6

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 21

11477 of LNCS, pages 183–213. Springer, Cham, May 2019. doi:10.1007/978-3-030
-17656-3_7.

[KMO18] Seny Kamara, Tarik Moataz, and Olga Ohrimenko. Structured encryption and leakage
suppression. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 339–370. Springer, Cham, August 2018. doi:
10.1007/978-3-319-96884-1_12.

[KMZZ20] Seny Kamara, Tarik Moataz, Stan Zdonik, and Zheguang Zhao. An optimal relational
database encryption scheme. Cryptology ePrint Archive, Report 2020/274, 2020. URL:
https://eprint.iacr.org/2020/274.

[KP13] Seny Kamara and Charalampos Papamanthou. Parallel and dynamic searchable
symmetric encryption. In Ahmad-Reza Sadeghi, editor, FC 2013, volume 7859 of
LNCS, pages 258–274. Springer, Berlin, Heidelberg, April 2013. doi:10.1007/978-3
-642-39884-1_22.

[KPR12] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable
symmetric encryption. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM
CCS 2012, pages 965–976. ACM Press, October 2012. doi:10.1145/2382196.2382298.

[Lab20] Encrypted Systems Lab. The clusion library. https://github.com/encryptedsyst
ems/Clusion, 2020.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on
property-preserving encrypted databases. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 644–655. ACM Press, October 2015. doi:
10.1145/2810103.2813651.

[NPG14] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. Dynamic searchable
encryption via blind storage. In 2014 IEEE Symposium on Security and Privacy,
pages 639–654. IEEE Computer Society Press, May 2014. doi:10.1109/SP.2014.47.

[PPY18] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful information retrieval.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
ACM CCS 2018, pages 1002–1019. ACM Press, October 2018. doi:10.1145/3243734.
3243821.

[PPY20] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Lower bounds for encrypted multi-
maps and searchable encryption in the leakage cell probe model. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS,
pages 433–463. Springer, Cham, August 2020. doi:10.1007/978-3-030-56784-2_15.

[PW16] David Pouliot and Charles V. Wright. The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 1341–1352. ACM Press, October 2016. doi:10.1145/2976749.2978
401.

[SPS14] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic
searchable encryption with small leakage. In NDSS 2014. The Internet Society,
February 2014. doi:10.14722/ndss.2014.23298.

[SWP00] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages
44–55. IEEE Computer Society Press, May 2000. doi:10.1109/SECPRI.2000.848445.

[Tra22] Transaction Processing Performance Council. Tpc benchmarktm h (decision support)
standard specification revision 3.0.1. https://www.tpc.org/tpc_documents_curren
t_versions/pdf/tpc-h_v3.0.1.pdf, 2022.

[Tra23] Transaction Processing Performance Council. Tpc download current specs/source.
https://www.tpc.org/tpc_documents_current_versions/current_specification
s5.asp, 2023.

[WCL+10] Cong Wang, Ning Cao, Jin Li, Kui Ren, and Wenjing Lou. Secure ranked keyword
search over encrypted cloud data. In 2010 IEEE 30th international conference on
distributed computing systems, pages 253–262. IEEE, 2010. doi:10.1109/ICDCS.2010
.34.

https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-319-96884-1_12
https://doi.org/10.1007/978-3-319-96884-1_12
https://eprint.iacr.org/2020/274
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1145/2382196.2382298
https://github.com/encryptedsystems/Clusion
https://github.com/encryptedsystems/Clusion
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1109/SP.2014.47
https://doi.org/10.1145/3243734.3243821
https://doi.org/10.1145/3243734.3243821
https://doi.org/10.1007/978-3-030-56784-2_15
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.1145/2976749.2978401
https://doi.org/10.14722/ndss.2014.23298
https://doi.org/10.1109/SECPRI.2000.848445
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://doi.org/10.1109/ICDCS.2010.34
https://doi.org/10.1109/ICDCS.2010.34

22 Structured Encryption for Indirect Addressing

Algs Lr
π

(
s, M

)
, Lπ

(
s, M

)
For ℓ ∈ {0, 1}lLen do

n← n + #(M[ℓ])
Return

(
n, (M)

)
Algs Lr

π

(
q, ℓ, l

)
, Lπ

(
q, ℓ, l

)
(ℓ1, . . . , ℓn, M)← l ; x← min

ℓi=ℓ
i

lk ← (M[ℓ], x) ; lk ←
(
#(M[ℓ]), x

)
Return

(
lk, (M, ℓ1, . . . , ℓn, ℓ)

)
Alg MMEr

π.Enc(Kf , M)
For ℓ ∈ {0, 1}lLen do

K ← F.Ev(Kf , ℓ)
For i = 0, 1 do Ki ← F.Ev(K, i)
(v1, . . . , vn)←M[ℓ]
For i ∈ [n] do

T[F.Ev(K0, i)]←$ SE.Enc(K1, vi)
Return T

Alg MMEr
π.Tok(Kf , ℓ)

Return F.Ev(Kf , ℓ)
Alg MMEr

π.Eval
(
(K0, K1), T

)
While T[F.Ev(K0, n)] ̸= ⊥ do

vn ← SE.Dec(K1, T[F.Ev(K0, n)])
n← n + 1

Return (v1, . . . , vn)

Alg MMEπ.Enc
(
(Kf , Ks), M

)
For ℓ ∈ {0, 1}lLen do

K ← F.Ev(Kf , ℓ) ; (v1, . . . , vn)←M[ℓ]
For i ∈ [n] do

T[F.Ev(K, i)]←$ SE.Enc(Ks, vi)
Return T
Alg MMEπ.Tok

(
(Kf , Ks), ℓ

)
Return F.Ev(Kf , ℓ)

Alg MMEπ.Eval(K, T)
While T[F.Ev(K, n)] ̸= ⊥ do

vn ← T[F.Ev(K, n)] ; n← n + 1
Return (v1, . . . , vn)
Alg MMEπ.Dec

(
(Kf , Ks), c

)
(v1, . . . , vn)← c

For i ∈ [n] do vi ← SE.Dec(Ks, vi)
Return (v1, . . . , vn)

Figure 8: “Standard” leakage for MME schemes that are RR and not RR (top), an
example of each such scheme (middle), and an RF MME scheme with analogous leakage
profile to MMEr

π.

[ZKP16] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries
are belong to us: The power of file-injection attacks on searchable encryption. In
Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 707–720.
USENIX Association, August 2016.

A Example MME Leakages Schemes.
In Section 2.1 we discuss “standard” MME schemes and their leakage profiles. For RR
MME, this leakage profile is Lr

π and MMEr
π achieves it. For non-RR MME, this leakage

profile is Lπ and MMEπ below achieves it. For RF MME, MMEf
π achieves the RF leakage

analog (see Section 5.1) of MMEr
π. The above MME and leakage algorithms are given in

Fig. 8. All of these schemes were inspired by
∏

bas from [CJJ+14], with minor modifications
to allow for the different response types and keep tokens compact. Each of these schemes
achieve (adaptive) semantic security with respect to their leakage algorithms in the RO
model (as was done in [CJJ+14, JT20]). The only caveat to this being that SE in the RR
and RF variants are of the “one-time pad style” (e.g. CTR mode, or using a PRG mask).

The primitives used are symmetric encryption scheme SE and function family F. We
require that SE.KS = {0, 1}F.ol = F.KS in MMEr

π. Note that MMEπ.KS = SE.KS × F.KS
and MMEr

π.KS = F.KS.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 23

Alg LMMu.Enc
(
(K1, K2), M

)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0 then // Values

M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then // Labels

For i ∈ [n] do
tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)
For i = 1, 2 do EDi←$ MMEi.Enc(Ki, Mi)
Return (ED1, ED2)

Alg LMMu.Tok
(
(K1, K2), ℓ

)
For i = 1, 2 do tki←$ MMEi.Tok(Ki, ℓ)
Return (tk1, tk2)

Alg LMMu.Eval
(
(tk1, tk2), (ED1, ED2)

)
t← MME2.Eval(tk2, ED2)
If t = () then

Return
(
1, MME1.Eval(tk1, ED1)

)
(t1, . . . , tn)← t
For i ∈ [n] do

ti ← MME1.Eval(ti, ED1)
Return

(
2, (t1, . . . , tn)

)
Alg LMMu.Dec

(
(K1, K2), (n, c)

)
If n = 1 then return MME1.Dec(K1, c)
(t1, . . . , tn)← c

For i ∈ [n] do ui ← MME1.Dec(K1, ti)
Return (u1, . . . , un)

Figure 9: Algorithms for IA-MME scheme LMMu for uniform depth-2 IA-MMs (i.e. StE
for UIA where UIA.dp = depth(M) = 2) using the LMM technique. Here, MME1, MME2
are MME schemes and MME2 is RR.

Note that MMEr
π has content oblivious leakage (as defined in Section 4). The setup

leakage is the number of values in T which is constant for homomorphic multimaps because
SE’s ciphertext length function is message independent. The query leakage (apart from
the query response) is the query equality pattern (which is independent of M).

B LMM details
LMM approach for uniform, depth-2 IA-MMs. The full pseudocode for LMMu is
given in Fig. 9. Note that LMMu.KS = MME1.KS×MME2.KS. We additionally assume that
lLen = vLen = len = MME1.tl (for M1, M2), and that depth(M) = 2 to avoid degeneracy.

Proving security of the LMM approach. Proving the security of the above IA-MME
schemes is more tricky than one might initially think. We demonstrate this by walking
through the seemingly straightforward security proof for LMMu then pointing out an issue
therein. Note that this applies to LMM too since LMMu is a special case of it.

Intuitively, this proof would involve reducing the security of LMMu to that of MME1
and MME2. Since these are all StE schemes, our proof would construct Llm,Slm, the
leakage algorithm and simulator for LMMu, from those associated to MME1, MME2 (i.e.
L1,S1,L2,S2). This intuitive proof works when L1,L2 are the“standard” leakage profile
(as discussed in Section 2.1 and Appendix A) but falls through under some pathological
leakage algorithms and simulators.

In Fig. 10 we give the intuitive Llm,Slm inspired by those used in prior work. Intuitively,
Llm

(
s, M

)
will construct M1, M2 in the same way as LMMu.Enc (using a random K1 ∈

MME1.KS)5 then return their setup leakages under the respective schemes that encrypt
them. The query leakage for ℓ includes the leakage incurred for querying ℓ under both

5An alternative approach to Llm is to generate the tokens tki in M2 using S1. However, this leads
to the same type of issues. If we instantiate a new instance of S1 outside of the leakage function, it is
possible that the simulator is randomized and the tokens it generates are different than the instance inside
Llm, so we will once again need to replace the tokens and employ content obliviousness to get the proof to
go through.

24 Structured Encryption for Indirect Addressing

Alg Llm
(
s, M

)
K1←$ MME1.KS
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ MME1.Tok(K1, vi)
M2[ℓ]← (tk1, . . . , tkn)

(L1, St1)←$ L1
(
s, M1

)
(L2, St2)←$ L2

(
s, M2

)
Return

(
(lk1, lk2), (St1, St2, M)

)

Alg Llm
(
q, ℓ, (St1, St2, M)

)
(lk1, St1)←$ L1

(
q, ℓ, St1

)
(lk2, St2)←$ L2

(
q, ℓ, St2

)
If M[ℓ] = (1∥ℓ1, . . . , 1∥ℓn) then

For i ∈ [n] do
(lki, St1)←$ L1

(
q, ℓi, St1

)
lk← (lk1, . . . , lkn)

Else lk← ()
Return

(
(lk1, lk2, lk), (St1, St2, M)

)

Alg Slm
(
s, (lk1, lk2)

)
(ED1, St′

1)←$ S1
(
s, lk1

)
(ED2, St′

2)←$ S2
(
s, lk2

)
(ED1, ED2)← ED

Return
(
ED, (St′

1, St′
2)

)
Alg Slm

(
q, (lk1, lk2, lk), (St′

1, St′
2)

)
If lk = (lk′

1, . . . , lk′
n) then

For i ∈ [n] do (tki, St′
1)←$ S1

(
q, lk′

i, St′
1
)

s← (tk1, . . . , tkn) ; (s′, lk)← lk2 ; lk2 ← (s, lk)
(tk1, St′

1)←$ S1
(
q, lk1, St′

1
)

(tk2, St′
2)←$ S2

(
q, lk2, St′

2
)

Return
(
(tk1, tk2), (St′

1, St′
2)

)
Figure 10: Leakage algorithm (left) and simulator (right) for LMMu, the IA-MME scheme
for uniform depth-2 IA-MMs. Here, MME1, MME2 are MME schemes and MME2 is RR.
The leakage algorithm and simulator of MMEi is Li,Si respectively.

schemes, and also the leakage associated with querying MME1 with any ℓi that would be
returned by MME2 (in the case of a depth-2 query).

Meanwhile, Slm’s algorithms channel their inputs into the respective simulators and
compose their outputs in the natural way. During the setup phase we have no problems
simulating data structures ED1, ED2. However, consider what happens in the query phase
when a depth-2 query is made. Recall that MME2 is response-revealing and so lk2 takes
the form (M2[ℓ], lk) for some lk where M2 is as it was constructed in Llm. Before this
leakage is passed to S2, the first argument is rewritten with s – the tokens returned by
S1. We call this the “leakage rewriting” trick. It is done so that MME2.Eval(tk, ED2) will
return tokens which MME1.Eval can evaluate. This switch is necessary because the tokens
in M2[ℓ] are generated with K2 selected in the leakage algorithm. S1 has no knowledge of
this key so we can expect that these tokens are unlikely to “work” with the simulated ED2.
However, this switch also means that the behavior of S2 in Slm is no longer well defined
because MME2’s semantic security only promises that S2

(
q, (M2[ℓ], lk), St′

2
)

returns a
token, not S2

(
q, (s, lk), St′

2
)
.

Proof of Theorem 3. We can now state and prove LMMu’s security under the content
obliviousness assumption:

Theorem 3. Let LMMu be the IA-MME scheme for UIA defined in Fig. 9 using MME
primitives MME1, MME2. Let Llm,Slm be as defined in Fig. 10, where Li,Si are the leakage
algorithm and simulator for MMEi (and L2 is content oblivious). Then given adversary A

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 25

Adversary A1(s)
K1←$ MME1.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ MME1.Tok(K1, vi)
M2[ℓ]← (tk1, . . . , tkn)

(lk2, St2)←$ L2
(
s, M2

)
(ED2, St′

2)←$ S2
(
s, lk2

)
Return

(
M1, (ED2, Sta)

)
Adversary ATok

1 (q, ED1, (ED2, Sta))

b′←$ATok∗
(q, (ED1, ED2), Sta) ; Return b′

Oracle Tok∗(ℓ)
(b1∥v1, . . . , bn∥vn)←M[ℓ]
(lk2, St2)←$ L2

(
q, ℓ, St2

)
If b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ Tok(vi)
(s′, lk)← lk2 ; lk2 ←

(
(tk1, . . . , tkn), lk

)
(tk2, St′

2)←$ S2
(
q, lk2, St′

2
)

tk1←$ Tok(ℓ) ; Return (tk1, tk2)

Adversary A2(s)
K1←$ MME1.KS
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}len if M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then

For i ∈ [n] do
tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)
ED1←$ MME1.Enc(K1, M1)
Return

(
M2, (K1, ED1, Sta)

)
Adversary ATok

2 (q, ED2, St′
a)

(K1, ED1, Sta)← St′
a

b′←$ATok∗
(q, (ED1, ED2), Sta)

Return b′

Oracle Tok∗(ℓ)
tk1←$ MME1.Tok(K1, ℓ)
tk2←$ Tok(ℓ)
Return (tk1, tk2)

Figure 11: Adversaries used in the proof of Theorem 3.

one can define A1,A2 such that:

Advss
LMMu,Llm,Slm

(A) ≤ Advss
MME1,L1,S1

(A1)
+ Advss

MME2,L2,S2
(A2).

Proof. The adversaries A1,A2 are described in Fig. 11. To aid this proof, we
define G0, G1, G2 in Fig. 12 where the adversary A plays different hybrid games. Let
b, b1, b2 be the challenge bits in Gss

LMMu,Llm,Slm
(A), Gss

MME1,L1,S1
(A1) and Gss

MME2,L2,S2
(A2)

respectively. Intuitively, each Ai is playing the semantic security game for MMEi and
runs A – A1 simulates the encryption of M2 using a simulator while A2 uses the MME1
algorithms to do likewise for M1.

The outline of the proof is to first transition from the “real-world” into a game where
the encryption of M2 is simulated. Then, transition to a game where token values for
M2 are generated lazily (where we invoke obliviousness). And finally, transition again
into a game where the encryption of both M1 and M2 are simulated, which matches the
“ideal-world.”

Our theorem statement will follow from a series of claims together with the triangle
inequality. Specifically, we use the following

|Pr[Gss
LMMu,Llm,Slm

(A)|b = 1]− Pr[Gss
LMMu,Llm,Slm

(A)|b = 0]|
≤ |Pr[G0]− Pr[G1]|+ |Pr[G1]− Pr[G2]|+ |Pr[G2]− Pr[G3]|.

The first and last terms give the theorem statement, and the difference between G1 and
G2 is 0 by our obliviousness assumption.

26 Structured Encryption for Indirect Addressing

Game G0

For i = 1, 2 do Ki←$ MMEi.KS
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0

then M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then

For i ∈ [n] do
tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)
For i = 1, 2 do

EDi←$ MMEi.Enc(Ki, Mi)
b′←$ATok

(
q, (ED1, ED2), Sta

)
Return b′ = 1

Oracle Tok(ℓ)
tk1←$ MME1.Tok(K1, ℓ)
tk2←$ MME2.Tok(K2, ℓ)
Return (tk1, tk2)

Game G1, G2

K1←$ MME1.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then

For i ∈ [n] do
tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)
ED1←$ MME1.Enc(K1, M1)
(lk2, St2)←$ L2

(
s, M2

)
(ED2, St′

2)←$ S2
(
s, lk2

)
b′←$ATok

(
q, (ED1, ED2), Sta

)
Return b′ = 1

Oracle Tok(ℓ)
(lk2, St2)←$ L2

(
q, ℓ, St2

)
(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 1 then

For i ∈ [n] do
tki←$ Tok(vi)

s← (tk1, . . . , tkn)
(s′, lk)← lk2 ; lk2 ← (s, lk)

tk1←$ MME1.Tok(K1, ℓ)
(tk2, St′

2)←$ S2
(
q, lk2, St′

2
)

Return (tk1, tk2)

Game G3

K1←$ MME1.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)
Else if b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ MME1.Tok(K1, vi)
M2[ℓ]← (tk1, . . . , tkn)

For i = 1, 2 do
(lki, Sti)←$ Li

(
s, Mi

)
(EDi, St′

i)←$ Si
(
s, lki

)
b′←$ATok

(
q, (ED1, ED2), Sta

)
Return b′ = 1

Oracle Tok(ℓ)
(lk1, St1)←$ L1

(
q, ℓ, St1

)
(lk2, St2)←$ L2

(
q, ℓ, St2

)
(b1∥v1, . . . , bn∥vn)←M[ℓ]
If b1 = · · · = bn = 1 then

For i ∈ [n] do
tki←$ Tok(vi)

s← (tk1, . . . , tkn)
(s′, lk)← lk2 ; lk2 ← (s, lk)

(tk1, St′
1)←$ S1

(
q, lk1, St′

1
)

(tk2, St′
2)←$ S2

(
q, lk2, St′

2
)

Return (tk1, tk2)

Figure 12: Games G0, G1, G2, G3 used in the proof of Theorem 3.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 27

Notice that all the encrypted data structures and tokens in G0 are generated using the
MME primitives. This is the same as what happens in the “real world” of Gss

LMMu,Llm,Slm
(A).

It is also equivalent to the “real world” experienced by A2. Therefore,

Pr[G0] = Pr[Gss
LMMu,Llm,Slm

(A)|b = 1]
= Pr[Gss

MME2,L2,S2
(A2)|b2 = 1].

In G1, the tokens for depth-1 queries and ED1 are generated using the MME primitive
while depth-2 tokens and ED2 are simulated. This is what happens in the “ideal world”
of Gss

MME2,L2,S2
(A2), which generates tokens for MME2 via a simulator. So,

Pr[G1] = Pr[Gss
MME2,L2,S2

(A2)|b2 = 0].

Next, we observe that G2 captures the “real world” of Gss
MME1,L1,S1

(A1), because it
recursively replaces the tokens prior to simulating the token for MME2, just like A1. This
establishes that,

Pr[G2] = Pr[Gss
MME1,L1,S1

(A1)|b1 = 1].
We now invoke perfect obliviousness to claim

|Pr[G2]− Pr[G1]| ≤ max
A

Pr[Gobliv
L2

(A)] = 0,

because the values in the leakage output are replaced with an equal number of values
from Tok. If the second part of lk2 is the same between these games, then everything
in the games is identically distributed. Therefore, the difference between these games
is bounded by the probability that the second part of lk2 differs. This is exactly the
probability captured by Gobliv

L2
. However, by assuming perfect content obliviousness, any

two homomorphic multimaps will have this part of the leakage be exactly the same and
because we replace s with the same number of inputs, we are effectively comparing leakage
outputs on two homomorphic multimaps.

Finally, we establish

Pr[G3] = Pr[Gss
MME1,L1,S1

(A1)|b1 = 0]
= Pr[Gss

LMMu,Llm,Slm
(A)|b = 0].

In G3 the tokens in M2 during the setup phase are generated with MME1, but just like in
Slm, they will be replaced with simulator-generated ones when the adversary queries the
associated label. It also replaces the values with updated tokens just like in both Slm and
A1.

LMM details. In Section 4, we described how LMMu, the scheme supporting uniform
depth-2 IA-MMs could be extended to support all IA-MMs. The resultant scheme is LMM,
an StE scheme for IA, whose pseudocode we present in Fig. 13. As in Section 4, we will
assume that all M being encrypted have depth(M) ≥ 2 to avoid degeneracy. Here, we let
D = IA.dp and have D + 1 MME schemes MME0, . . . , MMED, which are all RR except
MME1. As discussed in Section 4, we assume that the keys for the MME primitives can be
generated using function family F (i.e. {0, 1}F.ol = MMEi.KS for i ∈ {0, . . . , D}). Also, we
assume lLen = len, len = MME1.tl = · · · = MMED−1.tl and that vLen = len + ⌈log2(D)⌉.

We state the security of LMM with the below theorem, which uses the leakage algorithm
Llm depicted in Fig. 14. Though the latter pseudocode looks quite complex, its intuition is
straightforward. During the setup phase, its leakage is the sum of all the setup leakage from
the Mi generated in LMM.Enc under Li. When a query is made, the leakage algorithm
recursively traverses all the descendants of the query (using RecLeak) made (in the graph
visualization of IA-MMs in Section 3) and leaks their depths and their query leakages
(under the appropriate Li). Additionally, it leaks the query leakage under L0 for the access
to M0 and any additional accesses to M1 to retrieve non-RH values.

28 Structured Encryption for Indirect Addressing

Theorem 4. Let LMM be the IA-MME scheme for IA defined in Fig. 13 using MME
primitives MME0, . . . , MMED (where D = IA.dp) and function family F. Let Li,Si be a
leakage algorithm and simulator for MMEi. If L0,L2, . . . ,LD are content oblivious and Llm
is as defined in Fig. 14, then given adversary A one can define Af ,A0,A1, . . . ,AD,Slm
such that:

Advss
LMM,Llm,Slm

(A) ≤ Advprf
F (Af)

+ Advss
MME0,L0,S0

(A0)
+ Advss

MME1,L1,S1
(A1)

+ · · ·+ Advss
MMED,LD,SD

(AD).

Since the proof of this result is standard and is an extension of Theorem 3, we provide
only a sketch of this proof.

Proof Sketch. The proof proceeds through standard game transitions, much like
those in the proof of Theorem 3. We begin in the “real-world,” and make a game transition
to a game where we replace MME0 with a simulator and invoke the content obliviousness
of L0, so that the tokens can be replaced at query time in future games.

Next, we use a series of game transitions to replace MME2, then MME3, etc, until
MMED are all replaced with simulators. At each of these steps, we must additionally
invoke the content obliviousness of each of L2, . . . ,LD. Finally, we replace MME1 with a
simulator in our last game transition, which is equivalent to the “simulated world” against
Slm with Llm, but do not require content oblivious leakage, because it is response-hiding.

In each of these game transitions, we build up to the fully recursive leakage in Llm. We
add on depth to this recursive leakage as we replace schemes with simulators in subsequent
hybrid games.

C Inconsistent Simulators in Prior Work
We observe the use of “leakage rewriting” outlined in Section 4 in SPX, OPX, and LabGraph
[KM18, KMZZ20, CK10]. Specifically, these papers construct uniform, depth-2 IA-MMs
using the LMM scheme, but their proofs have a technical issue, which can be fixed without
content oblivious assumption. Although this issue does occur multiple times in SPX and
OPX, we will only outline a single occurrence for brevity. The other occurrences can be
fixed using the same content oblivious assumption. We observe in parts of SPX and OPX
the authors specify the construction should use a specific scheme, and the proofs which
make this assumption are free from the issue, because those schemes already have content
oblivious leakage. We also illustrate how the “chainability” assumption from [CK10] is
insufficient to justify the use of the “leakage rewriting” trick.

C.1 Leakage Rewriting in SPX/OPX
The relevant definition for the issue is Definition 4.3 at the end of Section 4 in SPX.
In the ideal game of this definition, the simulator only receives inputs of the form
(DS(qi),LQ(DS, qi)) to generate tokens.

We observe in the actual proof, the simulator SMM is not fed inputs of the same form
as in the security definition. The occurrence we focus on is in section “Appendix F: Proof
of Theorem 6.1” of SPX. The base simulator SMM is the simulator which exists based on
the security Definition 4.3.

In describing the simulator, the authors write,

rtkr ← SMM((ctj)j∈[#r],Lmm
Q (MMR, χ(r)))

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 29

Alg LMM.Enc(K, M)
D ← depth(M)
For i = 0, . . . , D do

Ki ← F.Ev(K, i)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= () do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

If bi = 0 then ui ← (0, 0len)
Else

di ← depth(M, vi)
tki←$ MMEdi .Tok(Kdi , vi)
ui ← (di, tki)

{jk}k∈[m] ← {i ∈ [n] : bi = 0}
M1[ℓ]← (vj1 , . . . , vjm)
tk←$ MME1.Tok(K1, ℓ)
d← depth(M, ℓ)
If d = 1 then M0[ℓ]← (1, tk)
Else

If m ≥ 1 then uj1 ← (0, tk)
Md[ℓ]← (u1, . . . , un)
tk′←$ MMEd.Tok(Kd, ℓ)
M0[ℓ]← ((d, tk′))

For d = 0, . . . , D do
EDd←$ MMEd.Enc(Kd, Md)

Return (ED0, . . . , EDD)

Alg LMM.Tok(K, ℓ)
tk←$ MME0.Tok

(
F.Ev(K, 0), ℓ

)
Return tk

Alg LMM.Eval(tk, ED)
(ED0, ED1, . . . , EDD)← ED
(d, tk′)← MME0.Eval(tk, ED0)
c′ ← MMEd.Eval(tk′, EDd)
If d = 1 then return (1, c′)(
(d1, tk1), . . . , (dn, tkn)

)
← c′

{jk}k∈[m] ← {i ∈ [n] : di = 0}
For i ∈ [n] do

If di ̸= 0 do ui ← LMM.Eval(tki, ED)
Else if i = j1 then

ui ← ⊥ ; c← MME1.Eval(tki, ED1)
Else ui ← ⊥

If m ≥ 1 then
return

(
(0, c), u1, . . . , un

)
Else return (0, u1, . . . , un)

Alg LMM.Dec(K, u)
K1 ← F.Ev(K, 1)
If u = (1, c′) then return MME1.Dec(K1, c′)
(b, u1, . . . , un)← u

{jk}k∈[m] ← {i ∈ [n] : ui = ⊥}
For i = 1, . . . , n where ui ̸= ⊥ do

wi ← LMM.Dec(K1, ui)
If b = (0, c) then

(v1, . . . , vm)← MME1.Dec(K1, c)
For i ∈ [m] do wji ← vi

Return (w1, . . . , wn)

Figure 13: Algorithms for IA-MME scheme LMM (i.e. StE for IA). Note that when we
assign the {jk}k∈[m] we require that j1 < · · · < jm. Since we move values to M1, by
convention, we store the token pointing to Mi[ℓ] in the first location a value would be (j1).

30 Structured Encryption for Indirect Addressing

Alg Llm
(
s, M

)
K←$ LMM.KS ; D ← depth(M)
Generate M0, . . . , MD as

in LMM.Enc(K, M)
For i = 0, . . . , D do

(lki, Sti)←$ Li
(
s, Mi

)
s← (St0, . . . , StD)
Return

(
(lk0, . . . , lkD), (s, M)

)
Alg Llm

(
q, ℓ, (s, M)

)
(St0, . . . , StD)← s
(lk0, St0)←$ L0

(
q, ℓ, St0

)
s← (St0, . . . , StD)
(lk, s)←$ RecLeak(ℓ, s, M)
Return

(
(lk0, lk), (s, M)

)

Alg RecLeak(ℓ, (St0, . . . , StD), M)
(b1∥v1, . . . , bn∥vn)←M[ℓ]
d← depth(M, ℓ) ; (lk′, Std)←$ Ld

(
q, ℓ, Std

)
If d = 1 then lk ← lk′

Else
If ∃i ∈ [n] where bi = 0 then

(lkc, St1)←$ L1
(
q, ℓ, St1

)
Else lkc ← ⊥
For i ∈ [n] do

If bi ̸= 0 then
s← (St0, . . . , StD)
(lki, (St0, . . . , StD))← RecLeak(vi, s, M)

Else lki ← ⊥
lk ← (lkc, lk′, lk1, . . . , lkn)

Return
(
(d, lk), (St0, . . . , StD)

)
Figure 14: Leakage algorithm for LMM used in the proof of Theorem 4. Here, each Li is
a leakage algorithm for MME scheme MMEi. Note that for i = 0, 2, . . . , D, MMEi is RR
and Li is content oblivious. RecLeak is a helper algorithm used by Llm to handle recursive
queries.

And, then in the proof pass these rtkr into another simulator,

tki,j ← SMM((rtkr)r∈DBatti,j =Xi,j
,Lmm

Q (MMV , χ(atti,j)))

However, there is no guarantee that this input to SMM fits the input form required
by Definition 4.3, because (rtkr)r∈DBatti,j =Xi,j

(tokens for MMR) are not necessarily the
same tokens contained in MMV (χ(atti,j)). Unless the leakage from the generation of the
simulated rtkr leaks the tokens in MMR or a way to generate them, then it is unlikely over
a random key choice the rtkr generated correspond to the values stored in MMV .

Note, this is not a necessary behavior of SMM, but one that is not ruled out. In Section
4, we illustrate a possible change to the security definition and a sufficient condition on
the leakage to avoid such a change. Either of which, will allow the proof to go through.

C.2 Leakage Rewriting in CK10

In LabGraph, the same trick is used in the proof of Theorem 6.2 [CK10]. At the beginning
of the proof, the authors outline a simulator S. In step 2b, S feeds in vw generated from
other simulators to generator a token τw. However, these simulators may not necessarily
generate stored tokens τ+ and τ− with high probability.

It is worth noting these authors require their structured encryption algorithms to be
“chainable,” which places restrictions on both the setup and query leakage. However, the
security definition (Definition 4.2) indicates the simulator for queries will receive input of
the form (L2(δ, q), vI) where I := Query(δ, q). But, the restrictions on the query leakage
function in their Definition 6.1 (Chainability) do not rule out the existence of a simulator
fitting the security definition but which behaves in an unspecified way on mismatched
input.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 31

D Achieving Response Flexibility
RfT transform. In Section 5.1 we sketched how RF MME schemes can be constructed
generically from RR MME using the RfT transform. Intuitively, we will first encrypt the
values in M which are supposed to be hidden from the server using symmetric encryption
scheme SE then encrypt this using RR MME scheme MME. More specifically, we define
the generic transform MMEf which takes the primitives as input and returns RF MME
scheme MMEf = RfT[MMEr, SE]. We define MMEf .KS = MMEr.KS× SE.KS and MMEf ’s
algorithms are given in Fig. 15. Note that this satisfies both requirements of an RF MME
because MMEr is RR and MMEf .Dec1((K, Ks), ·) = SE.Dec(Ks, ·). Note also that the
values in M1 are slightly longer than in M because of SE’s ciphertext expansion (i.e. if
vLen = x in M then vLen = SE.cl(x) in M1) so we expect MMEr, MMEf to support the
respective value lengths (and pad their values up to it if need be).

RfT preserves security. The RfT transform preserves both (standard) semantic
security and TV-security (as defined in Section 5.2) assuming state-of-the-art primitives.
We state and prove the TV-security variant of this result and note that the analogous
result for semantic security follows directly – by assuming that the adversary has no token
values in M.

In Section 5.1, we gave some intuition about deriving Lf from Lr. For the RfT
transform, the analogous leakage profile is given in Fig. 15. In this version of Lf , we
construct M1 from M by transcribing the bi = 1 values without modification, then
replacing the bi = 0 values with random strings of the appropriate length. Everything else
proceeds in the intuitive way from here on, using Lr, with M1 instead of M.

This leakage profile is stated a little different from the one sketched in Section 5.1
in order to simplify the proof. Namely, we sketched a leakage algorithm which uses
Lr algorithms everywhere except the query leakage, where the non-RR values would
be omitted from the query response tuple that is leaked. However, they are essentially
equivalent except that in the one below, we are implicitly leaking query patterns and do
away with any need for content obliviousness.

Theorem 5. Let MMEf = RfT[MMEr, SE] be the RF MME scheme in Fig. 15. Let Lr be
the leakage algorithm for MMEr and Lf be as defined in Fig. 15. Then, given an adversary
A and simulator S, one can construct A1,A2 such that:

Advtv
MMEf ,Lf ,S(A) ≤ Advind$

SE (A2) + Advtv
MMEr,Lr,S(A1).

Proof. We define the adversaries A1,A2 in Fig. 16 along with three games G0, G1, G2
where the adversary A plays different hybrid games. Let b, b1, b2 be the challenge bits in
Gtv

MMEf ,Lf ,S(A), Gind$
SE (A1) and Gtv

MMEr,Lr,S(A2) respectively.
In G0 (which includes the boxed code), the values in M1 are either encrypted with SE

or tokenized with MMEr. The encrypted data structure and tokens that A sees are also the
outputs of MMEr’s algorithms. This is equivalent to encryption and token generation in
the “real world” when A plays the TV-security game for MMEf . The adversary A2 (playing
the IND$ game) runs A, simulating everything like in the real world of the TV-security
game (with keys of its own choosing). uses its oracle to encrypt values in M1, but uses
MMEr’s algorithms everywhere else. Therefore, the “real world” of A1 playing the IND$
game is also equivalent to G0 and we have

Pr[G0] = Pr[Gtv
MMEf ,Lf ,S(A)|b = 1] = Pr[Gind$

SE (A1)|b1 = 1].

G1 is almost the same as G0 except that in place of encryption with SE, a randomly
selected bitstring of the same length will be used. From the above discussion, one can see
this is equivalent to A1 playing the IND$ game in the “ideal world”. At the same time, A2

32 Structured Encryption for Indirect Addressing

Alg MMEf .Enc
(
(K, Ks), M

)
For ℓ ∈ {0, 1}len do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

If bi = 0 then vi←$ SE.Enc(Ks, vi)
M1[ℓ]← (b1∥v1, . . . , bn∥vn)

ED←$ MMEr.Enc(K, M1) ; Return ED

Alg MMEf .Tok
(
(K, Ks), ℓ

)
tk←$ MMEr.Tok(K, ℓ) ; Return tk

Alg MMEf .Eval(tk, ED)
c←$ MMEr.Eval(tk, ED)
Return c

Alg MMEf .Dec
(
(K, Ks), c

)
(b1∥t1, . . . , bn∥tn)← c

For i ∈ [n] do
If bi = 0 then

ti ← SE.Dec(Ks, ti)
Return (t1, . . . , tn)

Alg Lf
(
s, M

)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] if bi = 0 then vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
(lk, St)←$ Lr

(
s, M1

)
Return (lk, St)

Alg Lf
(
q, ℓ, St

)
(tk, St)←$ Lr

(
q, ℓ, St

)
Return (tk, St)

Figure 15: Algorithms (top) and leakage algorithm (bottom) for RF MME scheme
MMEf = RfT[MMEr, SE] constructed using the RfT transform, RR MME scheme MMEr
(with leakage algorithm Lr) and symmetric encryption scheme SE.

also runs A but replaces all values that should be encrypted in M with random strings
before returning it during the setup phase. Therefore, G1 is also equivalent to A2 playing
the TV-security game for MMEr in the “real world”. This gives us

Pr[G1] = Pr[Gind$
SE (A1)|b1 = 0] = Pr[Gtv

MMEr,Lr,S(A2)|b2 = 1].

Finally, in G2, values in M that should be encrypted are still replaced with random
strings, but now this multimap is given to the leakage algorithm Lr and simulator S
to construct ED, tk. Immediately, we can see that this is equivalent to A2 playing the
TV-security game for MMEr in the “ideal world”. At the same time, we defined Lf to use
the same replacement technique and so it is also equivalent to A playing the TV-security
game for MMEf . This gives us

Pr[G2] = Pr[Gtv
MMEr,Lr,S(A2)|b2 = 0] = Pr[Gtv

MMEf ,Lf ,S(A)|b = 0].

Combining these three equations gives us the advantage bound in the theorem statement.

E TV-Secure RF MME scheme
In this section, we detail the RF MME scheme MMEf

π and explain why it achieves sufficient
security to be used in SMM. In particular, we reduce the TV-security of MMEf

π to the
security of its primitives under adaptive compromise. This latter notion of security was
first defined by JT for both function families (which we use without modification) and
symmetric encryption (which we modify slightly to suit the form of encryption done in our
scheme).

AC Security Notions. In our proof, we reduce the TV-security of MMEf
π to the SIM-

AC-PRF security of F, the SIM-AC-KP security of SE and the PRF security of F. All

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 33

Adversary AEnc
1

K←$ MMEr.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥u1, . . . , bn∥un)←M[ℓ]
For i ∈ [n] do

If bi = 0 then vi←$ Enc(vi)
Else vi←$ MME.Tok(K, vi)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEr.Enc(K, M1)
b′←$ATok(q, ED, Sta) ; Return b′

Oracle Tok(ℓ)
tk←$ MMEr.Tok(K, ℓ) ; Return tk

Adversary A2(s)
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥u1, . . . , bn∥un)←M[ℓ]
For i ∈ [n] do

If bi = 0 then
vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
Return (M1, Sta)

Adversary ATok
2 (q, ED, Sta)

b′←$ATok(q, ED, Sta)
Return b′

Games G0 , G1

K←$ MMEr.KS ; Ks←$ SE.KS
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do
If bi = 1 then vi←$ MMEr.Tok(K, vi)
Else vi←$ SE.Enc(Ks, vi)

Else vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEr.Enc(K, M1)
b′←$ATok(q, ED, Sta)
Return b′ = 1

Oracle Tok(ℓ)
tk←$ MMEr.Tok(K, ℓ)
Return tk

Game G2

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do
If bi = 1 then

vi←$ MMEr.Tok(K, vi)
Else vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
(lk, St)←$ Lr

(
s, M

)
(ED, St′)←$ S(s, lk)
b′←$ATok(q, ED, Sta)
Return b′ = 1

Oracle Tok(ℓ)
(lk, St)←$ Lr

(
s, ℓ, St

)
(tk, St′)←$ S(q, lk, St′)
Return tk

Figure 16: Adversaries and games used in the proof of Theorem 5.

three of the above security notions are given with respect to ideal primitives (similar to
the random oracle model or ideal cipher model). An ideal primitive P has functions P.Init,
which outputs an initial state, and P.Prim(x : σP), which statefully evaluates inputs. For
example, the fixed length n random oracle Pn

rom outputs an empty table on init and lazily
samples and records random elements from {0, 1}n on each new input to Pn

rom.Prim(x).
Additionally, the two notions of AC-security are defined with respect to simulators.

Intuitively, these simulators will be called upon to simulate calls to the ideal primitive,
compromised keys, and evaluations/encryption using the cryptographic primitive. For
more details on this syntax, the reader may refer to the work of [JT20]. These, along with
the primitives, are indicated in the subscript of the games and advantages.

Our first security notion is SIM-AC-PRF. The relevant security game Gsim-ac-prf
F,S,P is

recalled in Fig. 17 with only minor modifications to allow for concrete notions of security
(i.e. input and output lengths are assumed to be defined implicitly by the scheme,
instead of in a security parameter). We define the advantage of an adversary A as
Advsim-ac-prf

F,S,P (A) = 2 Pr[Gsim-ac-prf
F,S,P (A)]− 1.

34 Structured Encryption for Indirect Addressing

Game Gsim-ac-prf
F,S,P (A)

For u ∈ {0, 1}∗ do
Ku←$ F.KS

σP←$ P.Init
σ←$ S.Init
b←$ {0, 1}
b′←$AEv,Exp,Prim

Return b = b′

Oracle Prim(x)
y1←$ P.Prim(x : σP)
y0←$ S.Prim(x : σ)
Return yb

Oracle Ev(u, x)
y1←$ F.EvP(Ku, x)
If u ̸∈ X then

If Tu[x] = ⊥ then y0←$ {0, 1}F.ol

Else y0 ← Tu[x]
Else
y0←$ S.Ev(x : σ)
Tu[x]← y0

Return yb

Oracle Exp(u)
K1 ← Ku

K0←$ S.Exp(u, Tu : σ)
X.add(u)
Return Kb

Game Gsim-ac-kp
SE,S,P (A)

For u ∈ {0, 1}∗ do
Ku←$ SE.KS

σP←$ P.Init
σ←$ S.Init
b←$ {0, 1}
b′←$AEv,Enc,Prim

Return b = b′

Oracle Prim(x)
y1←$ P.Prim(x : σP)
y0←$ S.Prim(x : σ)
Return yb

Oracle Enc(u, m)
c1←$ SE.EncP(Ku, m)
If u ̸∈ X then

c0←$ S.Enc1(|m| : σ)
Else

c0←$ S.Enc2(u, m : σ)
Mu.add(m) ; Cu.add(cb)
Return cb

Oracle Exp(u)
K1 ← Ku

K0←$ S.Exp(u, Mu, Cu : σ)
X.add(u)
Return Kb

Figure 17: SIM-AC security definintions from [JT20] for PRF and CPA security. The
bottom game is a combination of the original CPA game in the paper and a condition on
the simulator structure to achieve key private security.

Also in Fig. 17 is the SIM-AC-KP notion of security captured in security game Gsim-ac-kp
SE,S,P ,

which is adapted from JT’s notion of SIM-AC-CPA security. In particular, we bring together
JT’s notion of CPA security and our conditions on simulator structure to ensure key private
(KP) security. As before, we define Advsim-ac-kp

SE,S,P (A) = 2 Pr[Gsim-ac-kp
SE,S,P (A)]− 1.

Algorithms and leakage of MMEf
π. In Section 5, we suggested that the MME tech-

niques of CJJ+ can be extended to achieve an RF MME scheme [CJJ+14]. In Fig. 18, we
give the algorithms and leakage profile of this scheme which we call MMEf

π.
The primitives used in MMEf

π are symmetric encryption scheme SE and function family F.
We require that SE.KS = {0, 1}F.ol = F.KS in MMEf

π. Note that MMEf
π.KS = SE.KS×F.KS.

Finally, since we prove security in an idealized model, we give MMEf
π access to two ideal

primitives P1 and P2.

Security reduction. We are now ready to state and prove the security reduction of
MMEf

π. The theorem stated below is analogous to the one in [JT20]. Note that, as
mentioned before, we denote the ideal primitives and simulators used in each definition in

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 35

Alg MMEf
π.EncP1,P2

(
(Kf , K0), M

)
For ℓ ∈ {0, 1}lLen do

K1,ℓ ← F.EvP1
(
Kf , ℓ∥1

)
K2,ℓ ← F.EvP1

(
Kf , ℓ∥2

)
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← SE.EncP2 (K1,ℓ, bi)
If bi = 1 then

c← SE.EncP2 (K1,ℓ, vi)
Else

c← SE.EncP2 (K0, vi)
T[F.EvP1 (K2,ℓ, i)]←$ (b′, c)

Return T
Alg MMEf

π.TokP1,P2 ((Kf , K0), ℓ)
K1,ℓ ← F.EvP1

(
Kf , ℓ∥1

)
K2,ℓ ← F.EvP1

(
Kf , ℓ∥2

)
Return (K1,ℓ, K2,ℓ)

Alg MMEf
π.EvalP1,P2 ((K1,ℓ, K2,ℓ), T)

n← 1
While T[F.EvP1 (K2,ℓ, n)] ̸= ⊥ do

(b′, c)← T[F.EvP1 (K2,ℓ, n)]
b← SE.DecP2 (K1,ℓ, b′)
v ← SE.DecP2 (K1,ℓ, c)
If b = 1 then vn ← 1∥v else vn ← 0∥c
n← n + 1

n← n− 1
Return (v1, . . . , vn)
Alg MMEf

π.DecP1,P2
(
(Kf , K0), v

)
(b1∥v1, . . . , bn∥vn)← v
For i ∈ [n] do

If bi = 0 then
vi ← SE.DecP2

(
K0, vi

)
Return (v1, . . . , vn)

Algs Lf
π

(
s, M

)
For ℓ ∈ {0, 1}lLen do

n← n + #(M[ℓ]))
Return

(
N, (M)

)
Algs Lf

π

(
q, ℓ, l

)
(ℓ1, . . . , ℓq, M)← l ; x← min

ℓi=ℓ
i

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

If bi = 0 then lki ← ⊥
Else (lki, l)← Lf

π

(
q, vi, l

)
lk ← (x, lk1, . . . , lkq)
Return

(
lk, (ℓ1, . . . , ℓq, ℓ, M)

)

Figure 18: Algorithms for RF MME scheme MMEf
π, and its leakage profile.

subscripts of each advantage terms. Additionally, we adopt the same notation used by JT
to manage a list L as a queue by using L.add, L.dq to queue and dequeue list elements,
respectively.

Theorem 1. Let MMEf
π and Lf be the scheme and leakage respectively described in

Figure 18 using PRF F, symmetric encryption scheme SE, and ideal primitives P1 and P2.
Then, given adversary A and simulators Sprf , Skp one can define Sf ,A1, A2,A3 such that:

Advtv
MMEf

π,Lf ,Sf ,P1,P2
(A) ≤ Advprf

F,P1
(A1) + Advsim-ac-kp

SE,Skp,P2
(A2)

+ Advsim-ac-prf
F,Sprf ,P1

(A3).

Proof. The proof closely follows the proof in Appendix D of [JT20]. In particular, we use
the same 3 primary game hops, however we reverse the order of the last two for simplicity.
To navigate these hops, along with the respective adversaries and games, we focus on the
differences from the proof given by [JT20].

Claim. Let G0 and G1 be defined as in Figure (19), and A1 be defined as in Figure (21).
Then,

|Pr[G1(A)]− Pr[G0(A)]| ≤ Advprf
F,P1

(A1).

36 Structured Encryption for Indirect Addressing

Game G0

σP←$ P1.Init
σ′

P←$ P2.Init
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrim,Tok(q, ED, Sta)
Return b′ = 1

Oracle Prim(x)
(d, x)← x

If d = 1 then
y←$ P1.Prim(x : σP)

Else
y←$ P2.Prim(x : σ′

P)
Return y

Oracle Tok(ℓ)
Return (K1,ℓ, K2,ℓ)

Alg Setup(M)
K0←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do
K1,ℓ ← F.EvP1

(
Kf , ℓ∥1

)
K2,ℓ ← F.EvP1

(
Kf , ℓ∥2

)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← SE.EncP2 (K1,ℓ, bi)
If bi = 1 then

vi←$ (K1,vi , K2,vi)
c← SE.EncP2 (K1,ℓ, vi)

Else
c← SE.EncP2 (K0, vi)

T[F.EvP1 (K2,ℓ, i)]←$ (b′, c)
Return T

Game G1

σP←$ P1.Init
σ′

P←$ P2.Init
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrim,Tok(q, ED, Sta)
Return b′ = 1

Oracle Prim(x)
(d, x)← x

If d = 1 then
y←$ P1.Prim(x : σP)

Else
y←$ P2.Prim(x : σ′

P)
Return y

Oracle Tok(ℓ)
Return (K1,ℓ, K2,ℓ)

Alg Setup(M)
K0←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do
K1,ℓ←$ {0, 1}F.ol

K2,ℓ←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← SE.EncP2 (K1,ℓ, bi)
If bi = 1 then

vi←$ (K1,vi , K2,vi)
c← SE.EncP2 (K1,ℓ, vi)

Else
c← SE.EncP2 (K0, vi)

T[F.EvP1 (K2,ℓ, i)]←$ (b′, c)
Return T

Alg Search((b1∥v1, . . . , bn∥vn), S)
For i ∈ [n] do

If bi = 1 then
If vi ∈ S then return true
If Search(M[vi], S ∪ vi) then return true

Return false

Figure 19: Games G0, G1 used in the proof of Theorem 1, and helper function Search used
therein.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 37

Game G2

σP←$ P1.Init
σ′←$ Skp.Init
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrim,Tok(q, ED, Sta)
Return b′ = 1

Oracle Prim(x)
(d, x)← x

If d = 1 then
y←$ P1.Prim(x : σP)

Else
y←$ Skp.Prim(x : σ′)

Return y

Oracle Tok(ℓ)
If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

Else then
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For t ∈ Tℓ

Mℓ.add(Tok(t))
K1,ℓ←$ Skp.Exp(ℓ, Mℓ, Cℓ : σ′)

Return (K1,ℓ, K2,ℓ)

Alg Setup(M)
For ℓ ∈ {0, 1}lLen do

K2,ℓ←$ {0, 1}F.ol

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← Skp.Enc1(|bi| : σ′)
Mℓ.add(bi) ; Cℓ.add(b′)

For i ∈ [n] do
c← Skp.Enc1(2 · F.ol : σ′)
If bi = 1 then

Tℓ.add(vi) ; Cℓ.add(c)
T[F.EvP1 (K2,ℓ, i)]←$ (b′, c)

Return T

Game G3

σ←$ Sprf .Init
σ′←$ Skp.Init
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrim,Tok(q, ED, Sta)
Return b′ = 1

Oracle Prim(x)
(d, x)← x

If d = 1 then
y←$ Sprf .Prim(x : σ)

Else
y←$ Skp.Prim(x : σ′)

Return y

Oracle Tok(ℓ)
If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

K2,ℓ←$ {0, 1}F.ol

Else then
For t ∈ Tℓ

Mℓ.add(Tok(t))
K1,ℓ←$ Skp.Exp(ℓ, Mℓ, Cℓ : σ′)
K2,ℓ←$ Sprf .Exp(ℓ, Xℓ : σ)

Return (K1,ℓ, K2,ℓ)

Alg Setup(M)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← Skp.Enc1(|bi| : σ′)
Mℓ.add(bi) ; Cℓ.add(b′)

For i ∈ [n] do
c← Skp.Enc1(2 · F.ol : σ′)
If bi = 1 then

Tℓ.add(vi) ; Cℓ.add(c)
x← {0, 1}F.ol ; Xℓ.add(x)
T[x]←$ (b′, c)

Return T

Figure 20: Games G2, G3 used in the proof of Theorem 1. The Search helper function is
given in Fig. 19.

38 Structured Encryption for Indirect Addressing

Adversary AEv,Prim
1

σ′
P←$ P2.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrimSim,TokSim(q, ED, Sta)
Return b′ = 1

Oracle PrimSim(x)
(d, x)← x

If d = 1 then
y←$ Prim(x)

Else
y←$ P2.Prim(x : σ′

P)
Return y

Oracle TokSim(ℓ)
Return (K1,ℓ, K2,ℓ)

Alg Setup(M)
K0←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do
K1,ℓ ← Ev(ℓ∥1)
K2,ℓ ← Ev(ℓ∥2)

For ℓ ∈ {0, 1}lLen do
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← SE.EncP2 (K1,ℓ, bi)
If bi = 1 then

vi←$ (K1,vi , K2,vi)
c← SE.EncP2 (K1,ℓ, vi)

Else
c← SE.EncP2 (K0, vi)

T[F.EvP1 (K2,ℓ, i)]←$ (b′, c)
Return T

Adversary AEnc,Exp,Prim
2

σP←$ P1.Init
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrimSim,TokSim(q, ED, Sta)
Return b′ = 1

Oracle TokSim(ℓ)
If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

Else then
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

If bi = 1 then
If K1,vi = ⊥ then

vi←$ TokSim(vi)
Else vi ← (K1,vi , K2,vi)
c← Enc(ℓ, vi)

K1,ℓ←$ Exp(ℓ)
Return (K1,ℓ, K2,ℓ)

Oracle PrimSim(x)
(d, x)← x

If d = 1 then
y←$ P1.Prim(x : σP)

Else
y←$ Prim(x)

Return y

Alg Setup(M)
For ℓ ∈ {0, 1}lLen do

K2,ℓ←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do
(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← Enc(ℓ, bi)
For i ∈ [n] do

If bi = 1 then
vi←$ TokSim(vi)
c← Enc(ℓ, vi)

Else
c← Enc(0, vi)

T[F.EvP1 (K2,ℓ, i)]←$ (b′, c)
Return T

Figure 21: Adversaries used for the first (top) and second (bottom) game hops in the
proof of Theorem 1.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 39

Adversary AEv,Exp,Prim
3

σ′←$ Skp.Init
(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false
ED←$ Setup(M)
b′←$APrimSim,TokSim(q, ED, Sta)
Return b′ = 1

Oracle TokSim(ℓ)
If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

K2,ℓ←$ {0, 1}F.ol

Else then
For t ∈ Tℓ

Mℓ.add(TokSim(t))
K1,ℓ←$ Skp.Exp(ℓ, Mℓ, Cℓ : σ′)
K2,ℓ←$ Exp(ℓ)

Return (K1,ℓ, K2,ℓ)

Oracle PrimSim(x)
(d, x)← x

If d = 1 then
y←$ Prim(x)

Else
y←$ Skp.Prim(x : σ′)

Return y

Alg Setup(M)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]
For i ∈ [n] do

b′ ← Skp.Enc1(|bi| : σ′)
Mℓ.add(b) ; Cℓ.add(b′)

For i ∈ [n] do
c← Skp.Enc1(2 · F.ol : σ′)
If bi = 1 then

Tℓ.add(vi) ; Cℓ.add(c)
x← Ev(ℓ, i)
T[x]←$ (b′, c)

Return T

Figure 22: Third adversary for the final game hop in the proof of Theorem 1.

The first game-hop (Claim 1 in [JT20]) generates K1 and K2 uniformly at random
instead of as PRF outputs, this step goes through without any issue and gives the
Advprf

F,P1
(A1) term in the statement.

We switch the order of the next 2 gamehops relative to [JT20] for simplicity. In the
second hop, we construct an adversary for an encryption game defined in [JT20]. This
allows us to run a simulator in the setup phase that outputs ciphertexts. Later (when A
calls Tok), we can give the simulator messages we want the ciphertexts to decrypt to and
it will return a key doing just that.

Claim. Let G2 be defined as in Figure (20), G1 as in Figure (19), and A2 as in Figure
(21). Then,

|Pr[G2(A)]− Pr[G1(A)]| ≤ Advsim-ac-kp
SE,Skp,P2

(A2).

At this point, we run into our first complication. The key given to the adversary when
Tok is called, must decrypt the revealed entries to other valid tokens. In both games each
K2 is still generated at random, so decrypting to those is just a matter of writing them
down at setup and resusing them in the Tok.

However, the K1 for each token we reveal must also be a valid token. In G1, we generate
K1 at random just like K2, which can be used later when Tok is called. However, in
G2, we delay the computing K1 until Tok is called. In order for the simulator Skp to
generate K1, it must recursively determine the tokens for revealed labels. We avoid any
circular dependence by requiring an adversary to supply a multimap without cycles in the
TV-security game. This jump, using Skp to give usable tokens gives us the Advsim-ac-kp

SE,Skp,P2
(A2)

in the statement.

Claim. Let G3 and G2 be defined as in Figure (20), and A3 be defined as in Figure (22).
Then,

|Pr[G3(A)]− Pr[G2(A)]| ≤ Advsim-ac-prf
F,Sprf ,P1

(A3),

40 Structured Encryption for Indirect Addressing

Alg Sf(s, lk)
(N)← lk

σ←$ Sprf .Init
σ′←$ Skp.Init
For i ∈ [N] do

b′ ← Skp.Enc1(1 : σ′)
c← Skp.Enc1(2 · F.ol : σ′)
x← {0, 1}F.ol

L.add((x, b′, c))
T[x]←$ (b′, c)

U ← [N]
St← (σ, σ′, U, L, T)
Return (T, St)

Alg Sf(q, lk, St)
(σ, σ′, U, L, T)← St ; (tk1, . . . , tkq)← T

(x, lk1, . . . , lkq)← lk

If x ≥ 1 then return tkx

For i ∈ [n] do
If lki = ⊥ then bi ← 0
Else bi ← 1 ; (vi, t)←$ Sf(q, lki, St)
(x, b′, ci)← L.dq()
M.add(bi) ; C.add(b′) ; X.add(x)

For i ∈ [n] do
If bi = 1 then M.add(vi) ; C.add(c)

ℓ←$ U ; U ← U \ {ℓ}
K1←$ Skp.Exp(ℓ, M, C : σ′)
K2←$ Sprf .Exp(ℓ, X : σ)
tk ← (K1, K2) ; T ← (tk1, . . . , tkq, tk)
St← (σ, σ′, U, L, T)
Return (tk, St)

Figure 23: Simulator for the proof of Theorem 1 which uses the leakage function from
Figure (18).

For the final jump, we replace the remaining PRF outputs with random outputs to
determine where in the data structure ciphertexts are stored. In G3, the key for these
outputs is determined later when Tok is queried. In a similar way K1 was in the previous
hop, the simulator Sprf provides a key that satisfies some of the previous outputs. This
final hop gives us the Advsim-ac-prf

F,Sprf ,P1
(A3) term in the theorem.

Claim. Let G3 be defined as in Figure (20), G0 as in Figure (19), Lf as in Figure (18),
and Sf as defined in Figure (23). Then,

|Pr[G3(A)]− Pr[G0(A)]| = Advtv
MMEf

π,Lf ,Sf ,P1,P2
(A),

At the end, we end up with a simulator, which outputs simulated ciphertexts in random
locations at setup phase. Then, at query time, determines the tokens to match the locations
and revealed values with recursive calls. This can be implemented with the recursive
leakage Lf

π and simulates the ideal game. We observe that G0 is exactly the real game
and G3 is the ideal game, which with the triangle inequality completes the proof.

F Searchable Encryption using MME and IA-MME
We provide the pseudocode for several Searchable Encryption schemes.

Searchable Encryption Data Type. We begin by formalizing a data type for search-
able encryption SEdt. This captures collections of documents which the client seeks to
retrieve via keywords that have been pre-assigned to the documents. For simplicity, we
will assume that all keywords are of a constant length len (in practice, this can be achieved
with hashing). So we define

SEdt.Dom = {{Di, Wi}n
i=1 : ∀i , Di ∈ {0, 1}∗, Wi ⊆ {0, 1}len} ,

SEdt.QS = {0, 1}len ,

SEdt.Eval(DS, w) = {D : (D, W) ∈ DS , w ∈W}.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 41

Alg SE1.Enc(K, DS)
For w ∈

⋃
(D,W)∈DS

W do
D←

(
D : (D, W) ∈ DS , w ∈W

)
M[w]← Part(D)

Return MME.Enc(K, M)

Alg SE1.Tok(K, w)
Return MME.Tok(K, w)

Alg SE1.Eval(tk, ED)
Return MME.Eval(tk, ED)

Alg SE1.Dec(K, c)
D← Unpart(MME.Dec(K, c))
Return {D : D ∈ D}

Alg SE2.Enc(K, DS)
(D1, W1), . . . , (Dn, Wn)← DS

For i ∈ [n] do M[0∥i]← Part(Di)
For w ∈

⋃
(D,W)∈DS

W do
M[1∥w]←

(
0∥i : i ∈ [n] , w ∈Wi

)
Return IAMME.Enc(K, M)

Alg SE2.Tok(K, w)
Return IAMME.Tok(K, 1∥w)

Alg SE2.Eval(tk, ED)
Return IAMME.Eval(tk, ED)

Alg SE2.Dec(K, c)
D← Unpart(IAMME.Dec(K, c))
Return {D : D ∈ D}

Figure 24: Two StE schemes for SEdt (searchable encryption). SE1 uses the strawman
solution of in-lined payloads and an MME scheme MME, and SE2 uses depth-two indirect
addressing scheme IAMME.

StE for SEdt. We now describe the two StE schemes for SEdt. Note that in our
pseudocode, we assume the existence of a partitioning algorithm Part which breaks a
string of arbitrary length into a tuple of strings of length len, then affixes a leading 0
to them (so they are ready for insertion into the IA-MME at depth-1). We require that
this partitioning be invertible via an algorithm Unpart, even when multiple partitioned
strings have been concatenated. In other words, for any strings s1, . . . , sn we require that
Unpart(Part(s1), . . . , Part(sn)) = (s1, . . . , sn). Additionally, in pseudocode, we assume that
“For” loops iterate over sets in a random order.

Our first scheme is SE1 which uses an MME primitive MME. This is based on the
strawman “inlined-payloads” technique mentioned in Section 3. Let SE1.KS = MME.KS,
and the pseudocode is given in Fig. 24. Note that since this is using an MME scheme, we
do not need the output of Part to have leading 0s.

Our second scheme is SE2 which uses a uniform depth-2 IA-MM for indexing. Let
SE1.KS = IAMME.KS, and the pseudocode is given in Fig. 24. As shown in our simulations
in Section 6, this saves storage since each document payload is only stored once in the
dataset.

G SQL StE using IA-MME
We now demonstrate various ways that IA-MME can be used to build StE for SQL
Databases. To simplify our discussion, we will focus on two types of non-recursive SQL
queries: relation retrievals and single-attribute joins. However, we believe that the below
StE schemes can extend their query support (e.g. select queries) using standard techniques
in the literature [KMZZ20, CNR21].

SQL Data Type. The data type capturing our desired functionality will be SQLdt.
First, we capture each relation in a SQL database as a tuple of strings with each string

42 Structured Encryption for Indirect Addressing

representing all the values in a row. We assume that relations in the database can be
uniquely identified via a string identifier of length len. The set of possible SQL relations
are therefore given by

SQLdt.Rltns = {(id, r) : id ∈ {0, 1}len , r = (r1, . . . , rn) , r1, . . . , rn ∈ {0, 1}∗}.

With this, we can define the data structures in SQLdt as

SQLdt.Dom = {DS : DS = {(idi, ri)}n
i=1} ⊂ SQLdt.Rltns , id1 ̸= . . . ̸= idn}.

We simplify the notation for retrieving the rows in a table by its unique identifier, with
DS[id] = r if and only if (id, r) ∈ DS. If no such relation exists in DS, then DS[id] = ⊥.

Joins take the rows of two tables and return some subsection of their cross product
based on a predicate For example, in an equijoin, the predicate is the equality of the
value in a particular column of the left (i.e. first input) table with another in a particular
column of the right (i.e. second input) table. Therefore, we simplify joins by defining join
predicates to be the set of functions:

JPs = {jpred : {0, 1}∗ × {0, 1}∗ → {0, 1}}.

We also define the function Join to compute a join. It takes two sets of rows and a join
predicate as input and returns a set of tuples of rows:

Join(r1, r2, jpred) = {(r1, r2) : r1 ∈ r1 , r2 ∈ r2 , jpred(r1, r2) = 1}.

We want to support all queries of the form “select * from [table]” and a user-defined
subset of the queries of the form “select * from [table1] join [table2] on [predicate]”. To
capture this, the scheme defines SQLdt.JnQs such that:

SQLdt.JnQs ⊆ {(j, jpred, id1, id2) : jpred ∈ JPs , id1, id2 ∈ {0, 1}len}
SQLdt.QS = {(r, id) : id ∈ {0, 1}len} ∪ SQLdt.JnQs.

And query evaluation works as follows, for any DS, jpred, id, id1, id2:

SQLdt.Eval(DS, (r, id)) = DS[id]

SQLdt.Eval(DS, (j, jpred, id1, id2)) =

⊥ , if DS[id1] = ⊥ or DS[id2] = ⊥
⊥ , if Join(DS[id1], DS[id2], jpred) = ∅
Join(DS[id1], DS[id2], jpred), otherwise

Indirect Addressing for SQLdt. We will describe three StE schemes for SQLdt that
use an arbitrary IA-MME scheme (LMM or SMM). These adapt and extend the techniques
from prior work in SQL StE and demonstrates the versatility of IA-MME, and its power
to simplify complicated StE schemes.

We also use Part as we did for SE, to partition a string into blocks of length len and
add leading zeroes. Similarly, Unpart restores any tuple of the form Part(r1)∥ . . . ∥Part(rn)
to (r1, . . . , rn). To simplify notation, we will assume the adversary chooses the set of joins
SQLdt.JnQs and makes queries such that the output is not ⊥. Additionally, for clarity, we
allow arbitrary length labels in IAMME, with the understanding that they can be hashed
to length len to match the desired syntax of an IA-MME. In all three cases, the security of
the StE scheme reduces to that of IAMME immediately, and we omit the proofs for brevity.

The first scheme is FP2 that uses depth-two indirect addressing to perform fully
precomputed join indexing. When SQL StE schemes SPX, OPX and FpSj are restricted

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 43

to the query support in SQLdt, their schemes are basically equivalent to FP2 with LMMu
as the underlying primitive [KM18, KMZZ20, CNR21]. Let FP2.KS = IAMME.KS. The
algorithms for FP2 are given in Fig. 25.

The next scheme is PP2 that modifies the approach above with partially precomputed
join indexing. When SQL StE scheme FpSj is restricted to the query support in SQLdt,
the schemes are basically equivalent to PP2. The scheme’s key set is given by PP2.KS =
IAMME.KS× SE.KS and its pseudocode is in Fig. 25. Compared to FP2 has strictly less
leakage (i.e. it is more secure) and reduces bandwidth and storage on practical datasets
[CNR21].

The scheme PP3 is a slight modification of PP2 which makes use of the observation
that when partially precomputed joins are indexed, the scheme might store the same
combinations of rows in the multimap as it would in a relation retrieval query. This happens
whenever an indexed join returns all rows from a relation somewhere in the join output.
With a third level of indirect addressing, we avoid indexing the whole set of rows again
and instead point to the relevant relation retrieval query. Using our IA-MME primitive,
the modification to achieve PP3 is very minimal, as demonstrated in the pseudocode in
Fig. 25. Note that PP3.KS = IAMME.KS× SE.KS.

44 Structured Encryption for Indirect Addressing

Alg FP2.Enc(K, DS)
For (id, (r1, . . . , rn)) ∈ DS do

For i = 1, . . . , n do
M[0∥id∥i]← Part(ri)

M[1∥(r, id)]← (1∥id∥i)
For (j, jpred, id1, id2) ∈ SQLdt.JnQs do

r← () ; (r1, . . . , rn)← DS[id1]
(r′

1, . . . , r′
n)← DS[id2]

For (i, j) ∈ [n]× [n] do
If jpred(ri, r′

j) = 1 then
r← r∥(1∥id∥i, 1∥id∥j)

M[1∥(j, jpred, id1, id2)]← r
Return IAMME.Enc(K, M)

Alg FP2.Tok(K, q)
If q = (r, id) then

return (r, IAMME.Tok(K, 1∥q))
Else return (j, IAMME.Tok(K, 1∥q))

Alg FP2.Eval((x, tk), ED)
Return (x, IAMME.Eval(tk, ED))

Alg FP2.Dec(K, (x, c))
r← IAMME.Dec(K, c)
(r1, . . . , rn)← Unpart(r)
If x = r then return (r1, . . . , rn)
Else return ((r1, r2), . . . , (rn−1, rn))

Algs PP2.Enc((K, Ks), DS), PP3.Enc((K, Ks), DS)

For (id, (r1, . . . , rn)) ∈ DS do
For i = 1, . . . , n do M[0∥id∥i]← Part(ri)
M[1∥(r, id)]← (1∥id∥i)

For (j, jpred, id1, id2) ∈ SQLdt.JnQs do
(r1, . . . , rn)← DS[id1] ; (r′

1, . . . , r′
n)← DS[id2]

ℓ1 ← 1∥L∥(j, jpred, id1, id2) ; ℓ2 ← 1∥R∥(j, jpred, id1, id2)
M[ℓ1]←

(
1∥id1∥i : i ∈ [n] , ∃j ∈ [n] , jpred(ri, r′

j) = 1
)

If M[ℓ1] = M[1∥(r, id1)] then M[ℓ1]← (1∥(r, id1))
M[ℓ2]←

(
1∥id2∥j : j ∈ [n] , ∃i ∈ [n] , jpred(ri, r′

j) = 1
)

If M[ℓ2] = M[1∥(r, id2)] then M[ℓ2]← (1∥(r, id2))
Return IAMME.Enc(K, M)

Algs PP2.Tok((K, Ks), q),PP3.Tok((K, Ks), q)
If q = (r, id) then return (r, IAMME.Tok(K, 1∥q))
Else If q = (j, jpred, id1, id2) then

Return
(
j, IAMME.Tok(K, 1∥L∥q), IAMME.Tok(K, 1∥R∥q), SE.Enc(Ks, jpred)

)
Algs PP2.Eval(tk, ED),PP3.Eval(tk, ED)
If tk = (r, tk′) then return (r, IAMME.Eval(tk, ED))
Else if tk = (j, tk1, tk2, c) then

Return (j, IAMME.Eval(tk1, ED), IAMME.Eval(tk2, ED), c)

Algs PP2.Dec((K, Ks), c),PP3.Eval(tk, ED)
If c = (r, c′) then return Unpart

(
IAMME.Dec(K, c′)

)
Else if c = (j, c1, c2, c3) then

r1 ← Unpart
(
IAMME.Dec(K, c1)

)
; r2 ← Unpart

(
IAMME.Dec(K, c2)

)
Return Join(r1, r2, SE.Dec(Ks, c3))

Figure 25: Three StE schemes for SQLdt (relation retrievals and joins on SQL data). FP2
and PP2 use depth-two uniform indirect addressing while PP3 uses depth-three non-uniform
indirect addressing.

Ruth Ng, Alexander Hoover, David Cash, Eileen Ee 45

Data Scheme LMM SMM
M0 M1 M2 M3 M

2021 ePrint SE2 – 9.388e7 6.542e3 – 9.389e7
2020 ePrint SE2 – 9.024e7 6.197e3 – 9.024e7

TPC-H (10MB) FP2 – 6.893e5 1.039e7 – 1.108e7
TPC-H (10MB) PP2 – 6.893e5 3.357e5 – 1.025e6
TPC-H (10MB) PP3 18 6.893e5 8.781e4 20 7.772e5
TPC-H (1GB) FP2 – 7.165e7 1.155e9 – 1.227e9
TPC-H (1GB) PP2 – 7.165e7 3.349e7 – 1.051e8
TPC-H (1GB) PP3 18 7.165e7 8.761e6 20 8.041e7

Figure 26: Full simulation results computing the sizes of unencrypted data structures
when using LMM and SMM. Sizes are computed in blocks of 128-bits (black) or 130-bits
(in blue). These demonstrate that SMM leaks less and is more storage efficient.

H Simulation Details
In this section, we provide additional details about our simulations. Our source code and
full results can be obtained from [Aut22].

ePrint dataset details. We used a Python script to scrape the ePrint keywords and
PDFs for 2020 and 2021 from the online archive [fCR22]. To ensure all documents were
accessible, we add the author-selected "category" to the documents’ keywords in the event
that the authors did not identify any.

TPC-H dataset details. We obtained the TPC-H tool [Tra23] and generated datasets
with scale factor 1 (approx 1GB) and scale factor 0.01 (approx 10MB). We used Python to
convert this into CSV format and perform the analysis. We followed the TPC-H schema
to determine a set of equijoins to support [Tra22]. The summary of the relations and joins
used can be found in [Aut22].

Additional simulation details. In all our simulations, we break up depth-1 values (i.e.
PDF documents and rows from each relation) into 128-bit blocks to accurately portray
how a real-world application might store such payloads. For token values, we assume that
each token is also 128-bits.

For the StE schemes for SQLdt, the LMM technique used by FP2, PP2 is consistent
with LMMu while that of PP3 is consistent with LMM. Additionally, we assume that depth
indicators are used in LMM for all multimaps except M1. All of these choices were done
to minimize server storage.

Full results. In Fig. 26 we provide the full simulation results.

	Introduction
	Related Work

	Preliminaries
	Structured Encryption

	Indirectly Addressed Encrypted Multimaps
	Layered-Multimap Approach
	Single-Multimap Approach
	Response-Flexible MME
	MME Security with Token Values
	Indirectly Addressed MME SMM

	Applications and Simulations of IA-MME
	References
	Example MME Leakages Schemes.
	LMM details
	Inconsistent Simulators in Prior Work
	Leakage Rewriting in SPX/OPX
	Leakage Rewriting in CK10

	Achieving Response Flexibility
	TV-Secure RF MME scheme
	Searchable Encryption using MME and IA-MME
	SQL StE using IA-MME
	Simulation Details

